【題目】如圖,將一副三角板,如圖放置在桌面上,讓三角板OAB30°角頂點(diǎn)與三角板OCD的直角頂點(diǎn)重合,邊OAOC重合,固定三角板OCD不動(dòng),把三角板OAB繞著頂點(diǎn)O順時(shí)針轉(zhuǎn)動(dòng),直到邊OB落在桌面上為止.

1)如下圖,當(dāng)三角板OAB轉(zhuǎn)動(dòng)了20°時(shí),求∠BOD的度數(shù);

2)在轉(zhuǎn)動(dòng)過程中,若∠BOD=20°,在下面兩圖中分別畫出∠AOB的位置,并求出轉(zhuǎn)動(dòng)了多少度?

3)在轉(zhuǎn)動(dòng)過程中,∠AOC∠BOD有怎樣的等量關(guān)系,請你給出相等關(guān)系式,并說明理由;

【答案】140°;(2)轉(zhuǎn)動(dòng)了40°80°; (3∠AOC+∠BOD=60°∠AOC-∠BOD=60°.

【解析】

試題(1)可直接求出角的度數(shù);(2)要考慮到在∠COD內(nèi)部和∠COD外部兩種情況;(3)要分幾種情況加以討論.

試題解析:(1∠BOD=90°∠AOC∠AOB=90°20°30°=40°.2)如圖

∠AOC=90°∠BOD∠AOB ∠AOC= 90°+∠BOD∠AOB

=90°20°30°=40° = 90°+20°30°=80°

所以轉(zhuǎn)動(dòng)了40°或轉(zhuǎn)動(dòng)了80°;

3①OB邊在∠COD內(nèi)部或與OD重合,如圖:關(guān)系式為:∠AOC+∠BOD=60°,理由是

∠AOC+∠BOD=90°∠AOB=90°30°=60°;

②OA邊在∠COD內(nèi)部或與OD重合,OB邊在∠COD外部,如圖:關(guān)系式為∠AOC∠BOD=60°,理由因?yàn)?/span>∠AOC=90°∠AOD,∠BOD=30°∠AOD

所以∠AOC∠BOD=90°∠AOD)-(30°∠AOD=90°∠AOD30°+∠AOD=60°;

③OAOB都在∠COD外部,如圖:此時(shí)關(guān)系式為∠AOC∠BOD=60°理由為

因?yàn)?/span>∠AOC=90°+∠AOD,∠BOD=30°+∠AOD,

所以∠AOC∠BOD=90°+∠AOD)-(30°+∠AOD=90°+∠AOD30°∠AOD=60°

綜合上述:∠AOC∠BOD的關(guān)系為:∠AOC+∠BOD=60°∠AOC∠BOD=60°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,O為對角線BD的中點(diǎn),過點(diǎn)O的直線EF分別交ADBCE,F兩點(diǎn),連結(jié)BEDF

(1)求證:DOE≌△BOF

(2)當(dāng)∠DOE等于多少度時(shí),四邊形BFDE為菱形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正△ABC的邊長為2,以BC邊上的高AB1為邊作正△AB1C1,△ABC與△AB1C1公共部分的面積記為S1;再以正△AB1C1邊B1C1上的高AB2為邊作正△AB2C2,△AB1C1與△AB2C2公共部分的面積記為S2;…,以此類推,則Sn=____.(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,M,N分別為BC,CD的中點(diǎn),AM=1,AN=2,MAN=60°,AM DC的延長線相交于點(diǎn)E,則AB的長為_____________;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某加工廠購進(jìn)甲、乙兩種原料,若甲原料的單價(jià)為千克,乙原料的單價(jià)為千克.現(xiàn)該工廠預(yù)計(jì)用不多于萬元且不少于萬元的資金購進(jìn)這兩種原料共千克.

(l)若需購進(jìn)甲原料千克,請求出的取值范圍;

(2)經(jīng)加工后:甲原料加工的產(chǎn)品,利潤率為;每一千克乙原料加工的產(chǎn)品售價(jià)為.則應(yīng)該怎樣安排進(jìn)貨,才能使銷售的利潤最大?

(3)(2)的條件下,為了促銷,公司決定每售出一千克乙原料加工的產(chǎn)品,返還顧客現(xiàn)金,而甲原料加工的產(chǎn)品售價(jià)不變,要使所有進(jìn)貨方案獲利相同,的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面直角坐標(biāo)系中,,現(xiàn)將線段點(diǎn)順時(shí)針旋轉(zhuǎn)得到點(diǎn),連接.

(1)求出直線的解析式;

(2)若動(dòng)點(diǎn)從點(diǎn)出發(fā),沿線段以每分鐘個(gè)單位的速度運(yùn)動(dòng),軸于,連接.設(shè)運(yùn)動(dòng)時(shí)間為分鐘,當(dāng)四邊形為平行四邊形時(shí),的值.

(3)為直線上一點(diǎn),在坐標(biāo)平面內(nèi)是否存在一點(diǎn),使得以、、為頂點(diǎn)的四邊形為菱形,若存在,求出此時(shí)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.

(1)求每臺A型電腦和B型電腦的銷售利潤;

(2)該商店計(jì)劃一次購進(jìn)兩種型號的電腦共100臺,其中B型電腦的進(jìn)貨量不超過A型電腦的2倍,設(shè)購進(jìn)A型電腦x臺,這100臺電腦的銷售總利潤為y元.

①求y關(guān)于x的函數(shù)關(guān)系式;

②該商店購進(jìn)A型、B型電腦各多少臺,才能使銷售總利潤最大?

(3)實(shí)際進(jìn)貨時(shí),廠家對A型電腦出廠價(jià)下調(diào)m(0<m<100)元,且限定商店最多購進(jìn)A型電腦70臺.若商店保持兩種電腦的售價(jià)不變,請你根據(jù)以上信息及(2)中條件,設(shè)計(jì)出使這100臺電腦銷售總利潤最大的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在青山區(qū)海綿城市工程中,某工程隊(duì)接受一段道路施工的任務(wù),計(jì)劃從201610月初至20179月底(12個(gè)月)完成施工3個(gè)月后,實(shí)行倒計(jì)時(shí),提高工作效率,剩余工程量與施工時(shí)間的關(guān)系如圖所示,那么按提高工作效率后的速度做完全部工程,則工期可縮短________個(gè)月.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三角形中,,.點(diǎn)從點(diǎn)出發(fā)以2個(gè)單位長度/秒的速度沿的方向運(yùn)動(dòng),點(diǎn)從點(diǎn)沿的方向與點(diǎn)同時(shí)出發(fā);當(dāng)點(diǎn)第一次回到點(diǎn)時(shí),點(diǎn),同時(shí)停止運(yùn)動(dòng);用(秒)表示運(yùn)動(dòng)時(shí)間.

1)當(dāng)為多少時(shí),的中點(diǎn);

2)若點(diǎn)的運(yùn)動(dòng)速度是個(gè)單位長度/秒,是否存在的值,使得;

3)若點(diǎn)的運(yùn)動(dòng)速度是個(gè)單位長度/秒,當(dāng)點(diǎn),邊上的三等分點(diǎn)時(shí),求的值.

查看答案和解析>>

同步練習(xí)冊答案