【題目】為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某大學(xué)某專業(yè)學(xué)院從本專業(yè)450人中隨機(jī)抽取了30名學(xué)生參加環(huán)保知識(shí)測(cè)試,得分十分制情況如圖所示:

30名學(xué)生的測(cè)試成績(jī)的眾數(shù),中位數(shù),平均數(shù)分別是多少?

學(xué)院準(zhǔn)備拿出2000元購(gòu)買獎(jiǎng)品獎(jiǎng)勵(lì)測(cè)試成績(jī)優(yōu)秀的學(xué)生,獎(jiǎng)品分為三等,成績(jī)?yōu)?/span>10分的為一等,成績(jī)?yōu)?/span>8分和9分的為二等,成績(jī)?yōu)?/span>7分的為三等;學(xué)院要求一等獎(jiǎng)獎(jiǎng)金,二等獎(jiǎng)獎(jiǎng)金,三等獎(jiǎng)獎(jiǎng)金分別占、,問(wèn)每種獎(jiǎng)品的單價(jià)各為多少元?

如果該專業(yè)學(xué)院的學(xué)生全部參加測(cè)試,在問(wèn)的獎(jiǎng)勵(lì)方案下,請(qǐng)你預(yù)測(cè)該專業(yè)學(xué)院將會(huì)拿出多少獎(jiǎng)金來(lái)獎(jiǎng)勵(lì)學(xué)生,其中一等獎(jiǎng)獎(jiǎng)金為多少元?

【答案】1)眾數(shù)是7,中位數(shù)是 7,平均數(shù)是,(2)一,二,三等獎(jiǎng)獎(jiǎng)金每種獎(jiǎng)品的單價(jià)分別為200元,160元,100元;(3)一等獎(jiǎng)獎(jiǎng)金為6000元.

【解析】

根據(jù)眾數(shù),中位數(shù),平均數(shù)的定義即可進(jìn)行解答;

分別用總錢數(shù)百分比人數(shù)可得每種獎(jiǎng)品的單價(jià);

先計(jì)算一等獎(jiǎng)的人數(shù)占30人的百分比,再與450相乘可得一等獎(jiǎng)的總?cè)藬?shù),根據(jù)單價(jià)200元可得結(jié)論.

由圖形可知:眾數(shù)是7

中位數(shù):第15個(gè)數(shù)和第16個(gè)數(shù)的平均數(shù):7,

平均數(shù):;

一等獎(jiǎng)獎(jiǎng)金:元,

二等獎(jiǎng)獎(jiǎng)金:元,

三等獎(jiǎng)獎(jiǎng)金:元,

答:一,二,三等獎(jiǎng)獎(jiǎng)金每種獎(jiǎng)品的單價(jià)分別為200元,160元,100元;

,

答:其中一等獎(jiǎng)獎(jiǎng)金為6000元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在RtABC中,∠C=90°,∠A=30°BC=18cm.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AB向點(diǎn)B運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿BC向點(diǎn)C運(yùn)動(dòng),如果動(dòng)點(diǎn)P2cm/s,Q1cm/s的速度同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(s),解答下列問(wèn)題:

(1)t______時(shí),PBQ是等邊三角形?

(2)P,Q在運(yùn)動(dòng)過(guò)程中,PBQ的形狀不斷發(fā)生變化,當(dāng)t為何值時(shí),PBQ是直角三角形?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在以下說(shuō)法中:實(shí)數(shù)分為正有理數(shù)、、負(fù)有理數(shù).實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對(duì)應(yīng).過(guò)直線外一點(diǎn)有且只有一條直線和已知直線垂直.過(guò)一點(diǎn)有且只有一條直線和已知直線 平行.假命題不是命題.如果兩條直線都和第三條直線平行,那么這兩條直線也互相平 行.若一個(gè)數(shù)的立方根和平方根相同,那么這個(gè)數(shù)只能是 其中說(shuō)法正確的個(gè)數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】筐白菜,以每筐千克為標(biāo)準(zhǔn),超過(guò)或不足的分別用正、負(fù)來(lái)表示,記錄如下:

與標(biāo)準(zhǔn)質(zhì)量的差單位:千克

筐 數(shù)

(1)與標(biāo)準(zhǔn)質(zhì)量比較,筐白菜總計(jì)超過(guò)或不足多少千克?

(2)若白菜每千克售價(jià)元,則出售這筐白菜可賣多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)坐標(biāo)為,點(diǎn)的坐標(biāo)為

1)求直線的解析式;

2)點(diǎn)是坐標(biāo)軸上的一個(gè)點(diǎn),若為直角邊構(gòu)造直角三角形,請(qǐng)求出滿足條件的所有點(diǎn)的坐標(biāo);

3)如圖 2,以點(diǎn)為直角頂點(diǎn)作,射線軸的負(fù)半軸與點(diǎn),射線軸的負(fù)半軸與點(diǎn),當(dāng)繞點(diǎn)旋轉(zhuǎn)時(shí),的值是否發(fā)生變化?若不變,直接寫出它的值;若變化,直接寫出它的變化范圍(不要解題過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線x軸交于點(diǎn),與y軸交于點(diǎn),把直線沿x軸的負(fù)方向平移6個(gè)單位得到直線,直線x軸交于點(diǎn)C,與y軸交于點(diǎn)D,連接BC

如圖,分別求出直線的函數(shù)解析式;

如果點(diǎn)P是第一象限內(nèi)直線上一點(diǎn),當(dāng)四邊形DCBP是平行四邊形時(shí),求點(diǎn)P的坐標(biāo);

如圖,如果點(diǎn)E是線段OC的中點(diǎn),,交直線于點(diǎn)F,在y軸的正半軸上能否找到一點(diǎn)M,使是等腰三角形?如果能,請(qǐng)求出所有符合條件的點(diǎn)M的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2﹣2ax+c(a≠0)交x軸于A,B兩點(diǎn),A點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點(diǎn)G.

(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸l在邊OA(不包括O、A兩點(diǎn))上平行移動(dòng),分別交x軸于點(diǎn)E,交CD于點(diǎn)F,交AC于點(diǎn)M,交拋物線于點(diǎn)P,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用含m的代數(shù)式表示PM的長(zhǎng);
(3)在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和△AEM相似?若存在,求出此時(shí)m的值,并直接判斷△PCM的形狀;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,AB=15,AC=13,AD⊥BC于D,AD=12,⊙O是△ABC的外接圓,則⊙O的半徑是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)活動(dòng)課上,老師準(zhǔn)備了若干個(gè)如圖1的三種紙片,種紙片是邊長(zhǎng)為的正方形,種紙片是邊長(zhǎng)為的正方形,種紙片是長(zhǎng)為,寬為的長(zhǎng)方形.并用種紙片一張,種紙片一張,種紙片兩張拼成如圖2的大正方形.

1)請(qǐng)用兩種不同的方法求圖2大正方形的面積:方法1_______;方法2________;

2)觀察圖2,請(qǐng)你寫出代數(shù)式:之間的等量關(guān)系________;

3)根據(jù)(2)題中的等量關(guān)系,解決如下問(wèn)題:

①已知:,求的值;

②已知,求的值;

③已知(a-2019)2+(a-2021)2=8,則求(a-2020)2的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案