【題目】為了解本學期初三期中調研測試數(shù)學試題的命題質量與難度系數(shù),命題教師選取了一個水平相當?shù)某跞昙夁M行分析研究,隨機抽取部分學生成績(得分為整數(shù),滿分為130)分為5:第一組5570,第二組7085,第三組85100,第四組100115,第五組115130;統(tǒng)計后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖,觀察圖形的信息,回答下列問題:

(1)本次調查共隨機抽取了該年級多少名學生?并將頻數(shù)分布直方圖補充完整;

(2)若將得分轉化為等級,規(guī)定:得分低于70分評為“D”,70100分評為“C”,100115分評為“B”,115130分評為“A”,那么該年級1500名考生中,考試成績評為“B”的學生大約有多少名?

【答案】(1)50人;(2420

【解析】

(1)通過頻數(shù)分布直方圖和扇形統(tǒng)計圖可知第三組的人數(shù)和所占比例,進而可求出總人數(shù)和第五組的人數(shù);

(2)根據(jù)(1)問求出的結果,可計算出“B”的學生所占的比例,進而可求出1500名考生中成績評為“B”的學生人數(shù).

解:(1)總人數(shù):20÷40%=50()

統(tǒng)計圖如圖所示:

(2)=420()

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:在菱形ABCD中,O是對角線BD上的一動點.

1)如圖甲,P為線段BC上一點,連接PO并延長交AD于點Q,當OBD的中點時,求證:;

2)如圖乙,連接AO并延長,與DC交于點R,與BC的延長線交于點,,求ASOR的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD,AB=AD,∠BAD=90°,∠BCD=30°,∠BAD的平分線AE與邊DC相交于點E,連接BE、AC,AC=7,△BCE的周長為16,則線段BC的長為____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線分別交軸、軸于點.的坐標是,拋物線經過、兩點且交軸于點.軸上一點,過點軸的垂線交直線于點,交拋物線于點,連結,設點的橫坐標為.

1)求點的坐標.

2)求拋物線的表達式.

3)當以、、、為頂點的四邊形是平行四邊形時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,把矩形沿AC折疊,點B落在點E處,AEDC的交點為O,連接DE

(1)求證:ADE≌△CED;

(2)求證:DEAC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象與軸分別交于點、(在左側),與軸交于點,若將它的圖象向上平移4個單位長度,再向左平移5個單位長度,所得的拋物線的頂點坐標為.

(1)原拋物線的函數(shù)解析式是 .

(2)如圖①,點是線段下方的拋物線上的點,求面積的最大值及此時點的坐標;

(3)如圖②,點是線段上一動點,連接,在線段上是否存在這樣的點,使為等腰三角形且為直角三角形?若存在,求點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,直線與圓有三種位置關系:相交、相切、相離.類比直線與圓的位置關系,給出如下定義:與坐標軸不平行的直線與拋物線有兩個公共點叫做直線與拋物線相交;直線與拋物線有唯一的公共點叫做直線與拋物線相切,這個公共點叫做切點;直線與拋物線沒有公共點叫做直線與拋物線相離.

(1)記一次函數(shù)的圖像為直線,二次函數(shù)的圖像為拋物線,若直線與拋物線相交,求的取值范圍;

(2)若二次函數(shù)的圖像與軸交于點、,與軸交于點,直線lCB平行,并且與該二次函數(shù)的圖像相切,求切點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】反比例函數(shù)在第一象限上有兩點AB.

(1)如圖1,AMy軸于M,BNx軸于N,求證:AMO的面積與BNO面積相等;

(2)如圖2,若點A(2,m),B(n,2)AOB的面積為16,求k.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】義烏國際小商品博覽會某志愿小組有五名翻譯,其中一名只會翻譯阿拉伯語,三名只會翻譯英語,還有一名兩種語言都會翻譯若從中隨機挑選兩名組成一組,則該組能夠翻譯上述兩種語言的概率是  

A. B. C. D.

查看答案和解析>>

同步練習冊答案