【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=ax2﹣4ax﹣交x軸正半軸于點(diǎn)A(5,0),交y軸于點(diǎn)B.
(1)求拋物線的解析式;
(2)如圖1,點(diǎn)P為第一象限內(nèi)拋物線上一點(diǎn),連接AP,將射線AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,與過(guò)點(diǎn)P且垂直于AP的直線交于點(diǎn)C,設(shè)點(diǎn)P橫坐標(biāo)為t,點(diǎn)C的橫坐標(biāo)為m,求m與t之間的函數(shù)關(guān)系式(不要求寫(xiě)出t的取值范圍);
(3)如圖2,在(2)的條件下,過(guò)點(diǎn)C作直線交x軸于點(diǎn)D,在x軸上取點(diǎn)F,連接FP,點(diǎn)E為AC的中點(diǎn),連接ED,若F的橫坐標(biāo)為-,∠AFP=∠CDE,且∠FAP+∠ACD=180°,求m的值.
【答案】(1)y=x2﹣x﹣(2)m=t2+t+3(3)-
【解析】
(1)把點(diǎn)A坐標(biāo)代入即能求a的值.
(2)由AP⊥PC和旋轉(zhuǎn)60°得∠PAC=60°得到特殊Rt△APC.利用已知點(diǎn)P、C的橫坐標(biāo)的條件,分別過(guò)點(diǎn)C、點(diǎn)P作坐標(biāo)軸的垂線,構(gòu)造三垂直模型下的相似,且相似比即為PC與AP的比.用t、m表示相似三角形對(duì)應(yīng)邊的長(zhǎng)度,利用相似比為列方程,即得到m與t的關(guān)系式.
(3)由特殊Rt△APC中∠ACP=30°與點(diǎn)E為AC的中點(diǎn)的條件得到CE=AE=AP;構(gòu)造PQ=AP(Q在x軸上)得∠PAQ=∠PQA,再由∠FAP+∠ACD=180°和∠FAP鄰補(bǔ)角為∠PAN得到∠ACD=∠PAN,即得到∠ACD=∠PAQ=∠PQA,因此構(gòu)造的△QFP與△CDE全等,得到QF=CD.由四邊形APCD內(nèi)角和為360°可求得∠CDF=60°,作CH⊥x軸構(gòu)造特殊直角三角形,利用CH=MN即可以t的式子表示CH,進(jìn)而用t表示CD.又易由t的式子表示QF,列方程即求得t的值.再代回(2)的式子即求出m的值.
(1)∵拋物線y=ax2﹣4ax﹣過(guò)點(diǎn)A(5,0),
∴25a﹣20a﹣=0,
解得:a=,
∴拋物線的解析式為;
(2)過(guò)點(diǎn)P作MN⊥x軸于點(diǎn)N,過(guò)點(diǎn)C作CM⊥MN于點(diǎn)M,
∴∠M=∠ANP=90°,
∴∠MCP+∠CPM=90°.
∵CP⊥AP,
∴∠APC=90°,
∴∠CPM+∠APN=90°,
∴∠MCP=∠APN,
∴△MCP∽△NPA,
∴,
∵∠APC=90°,∠PAC=60°,
∴∠ACP=30°,tan∠PAC=,
∴,即.
∵xP=t,xC=m,
∴MC=t﹣m,PN=yP=,
∴t﹣m=,
整理得:m=,
(3)過(guò)點(diǎn)C作CH⊥x軸于點(diǎn)H,在x軸上取點(diǎn)Q,連接PQ且使PQ=AQ,
∴∠CHD=90°,∠PAN=∠PQN,
∵∠ACP=30°,∠APC=90°,點(diǎn)E是AC中點(diǎn),
∴AP=AC=CE=AE,
∴CE=PQ,
∵∠FAP+∠ACD=180°,∠FAP+∠PAN=180°,
∴∠ACD=∠PAN,
∴∠ACD=∠PQN,
在△CDE與△QFP中
,
∴△CDE≌△QFP(AAS),
∴CD=QF,
由(1)得,AN=t﹣5,PM=,PN=,
∴CH=MN=PM+PN==.
∵∠CDH=360°﹣∠CDP﹣∠APC﹣∠FAP=360°﹣(∠ACD+∠FAP)﹣∠ACP﹣∠APC=360°﹣180°﹣30°﹣90°=60°,
∴sin∠CDH=,
∴CD==,
∵F(﹣,0),
∴QF=AF+AQ=AF+2AN=5﹣(﹣)+2(t﹣5)=2t﹣,
∴,
解得:t1=﹣3,t2=7,
∵點(diǎn)P在第一象限,t>5,
∴t=7,
∴m=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】天水某公交公司將淘汰某一條線路上“冒黑煙”較嚴(yán)重的公交車,計(jì)劃購(gòu)買A型和B型兩行環(huán)保節(jié)能公交車共10輛,若購(gòu)買A型公交車1輛,B型公交車2輛,共需400萬(wàn)元;若購(gòu)買A型公交車2輛,B型公交車1輛,共需350萬(wàn)元,
(1)求購(gòu)買A型和B型公交車每輛各需多少萬(wàn)元?
(2)預(yù)計(jì)在該條線路上A型和B型公交車每輛年均載客量分別為60萬(wàn)人次和100萬(wàn)人次.若該公司購(gòu)買A型和B型公交車的總費(fèi)用不超過(guò)1220萬(wàn)元,且確保這10輛公交車在該線路的年均載客量總和不少于650萬(wàn)人次,則該公司有哪幾種購(gòu)車方案?哪種購(gòu)車方案總費(fèi)用最少?最少總費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)P是弦BC上一動(dòng)點(diǎn)(不與端點(diǎn)重合),過(guò)點(diǎn)P作PE⊥AB于點(diǎn)E,延長(zhǎng)EP交于點(diǎn)F,交過(guò)點(diǎn)C的切線于點(diǎn)D.
(1)求證:△DCP是等腰三角形;
(2)若OA=6,∠CBA=30°.
①當(dāng)OE=EB時(shí),求DC的長(zhǎng);
②當(dāng)的長(zhǎng)為多少時(shí),以點(diǎn)B,O,C,F為頂點(diǎn)的四邊形是菱形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD,F(xiàn)是對(duì)角線AC上的一點(diǎn),過(guò)點(diǎn)D作DE∥AC,且DE=CF,連接AE、DE、EF.
(1)求證:△ADE≌△BCF;
(2)若∠BAF+∠AED=180°,求證:四邊形ABFE為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某款籃球架的示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長(zhǎng)為2.50米,籃板頂端F點(diǎn)到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.26,sin75°≈0.97,tan75°≈3.73,≈1.73)( 。
A. 3.04B. 3.05C. 3.06D. 4.40
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,第一個(gè)正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)D的坐標(biāo)為(0,4),延長(zhǎng)CB交x軸于點(diǎn)A1,作第二個(gè)正方形A1B1C1C;延長(zhǎng)C1B1交x軸于點(diǎn)A2,作第三個(gè)正方形A2B2C2C1…按這樣的規(guī)律進(jìn)行下去,第2018個(gè)正方形的面積為( 。
A. 20×()2017 B. 20×()2018 C. 20×()4036 D. 20×()4034
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,PC切⊙O于點(diǎn)P,過(guò)A作直線AC⊥PC交⊙O于另一點(diǎn)D,連接PA、PB.
(1)求證:AP平分∠CAB;
(2)若P是直徑AB上方半圓弧上一動(dòng)點(diǎn),⊙O的半徑為2,則
①當(dāng)弦AP的長(zhǎng)是_____時(shí),以A,O,P,C為頂點(diǎn)的四邊形是正方形;
②當(dāng)的長(zhǎng)度是______時(shí),以A,D,O,P為頂點(diǎn)的四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半徑為且坐標(biāo)原點(diǎn)為圓心的圓交軸、軸于點(diǎn)、、、,過(guò)圓上的一動(dòng)點(diǎn)(不與重合)作,且(在右側(cè))
(1)連結(jié),當(dāng)時(shí),則點(diǎn)的橫坐標(biāo)是______.
(2)連結(jié),設(shè)線段的長(zhǎng)為,則的取值范圍是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究:
(1)如圖①,已知等邊△ABC,邊長(zhǎng)為4,則△ABC的外接圓的半徑長(zhǎng)為 .
(2)如圖②,在矩形ABCD中,AB=4,對(duì)角線BD與邊BC的夾角為30°,點(diǎn)E在為邊BC上且BE=BC,點(diǎn)P是對(duì)角線BD上的一個(gè)動(dòng)點(diǎn),連接PE,PC,求△PEC周長(zhǎng)的最小值.
問(wèn)題解決:
(3)為了迎接新年的到來(lái),西安城墻舉辦了迎新年大型燈光秀表演.其中一個(gè)鐳射燈距城墻30米,鐳射燈發(fā)出的兩根彩色光線夾角為60°,如圖③,若將兩根光線(AB,AC)和光線與城墻的兩交點(diǎn)的連接的線段(BC)看作一個(gè)三角形,記為△ABC,那么該三角形周長(zhǎng)有沒(méi)有最小值?若有,求出最小值,若沒(méi)有,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com