【題目】如圖所示,正方形ABCD的面積為12,△ABE是等邊三角形,點(diǎn)E在正方形內(nèi),在對(duì)角線AC上找到一點(diǎn)P,使PD+PE的和最小,則這個(gè)和的最小值是( )
A.B.C.3D.
【答案】A
【解析】
由于點(diǎn)B與D關(guān)于AC對(duì)稱(chēng),BE與AC的交點(diǎn)即為P點(diǎn).此時(shí)PD+PE=BE最小,而BE是等邊△ABE的邊,BE=AB,由正方形ABCD的面積為12,可求出AB的長(zhǎng),從而得出結(jié)果.
解:設(shè)BE與AC交于點(diǎn)P′,
∵四邊形ABCD是正方形,
∴點(diǎn)B與D關(guān)于AC對(duì)稱(chēng),
∴P′D=P′B,
∴P′D+P′E=P′B+P′E=BE最。
即P在AC與BE的交點(diǎn)上時(shí),PD+PE最小,為BE的長(zhǎng)度;
∵正方形ABCD的面積為12,
∴AB=.
又∵△ABE是等邊三角形,
∴BE=AB=.
故所求最小值為.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的頂點(diǎn)A,B在x軸的負(fù)半軸上,反比例函數(shù)y=(k1≠0)在第二象限內(nèi)的圖象經(jīng)過(guò)正方形ABCD的頂點(diǎn)D(m,2)和BC邊上的點(diǎn)G(n,),直線y=k2x+b(k2≠0)經(jīng)過(guò)點(diǎn)D,點(diǎn)G,則不等式≤k2x+b的解集為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的高AD與中線BE相交于點(diǎn)F,過(guò)點(diǎn)C作BE的平行線、過(guò)點(diǎn)F作AB的平行線,兩平行線相交于點(diǎn)G,連接BG.
(1)若AE=2.5,CD=3,BD=2,求AB的長(zhǎng);
(2)若∠CBE=30°,求證:CG=AD+EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新冠肺炎疫情發(fā)生后,口罩市場(chǎng)出現(xiàn)熱銷(xiāo),小明的爸爸用12000元購(gòu)進(jìn)醫(yī)用外科、N95兩種型號(hào)的口罩在自家藥房銷(xiāo)售,銷(xiāo)售完后共獲利2700元,進(jìn)價(jià)和售價(jià)如下表:
品名價(jià)格 | 醫(yī)用外科口罩 | N95口罩 |
進(jìn)價(jià)(元/袋) | 20 | 30 |
售價(jià)(元/袋) | 25 | 36 |
(1)小明爸爸的藥房購(gòu)進(jìn)醫(yī)用外科、N95兩種型號(hào)口罩各多少袋?
(2)該藥房第二次以原價(jià)購(gòu)進(jìn)醫(yī)用外科、N95兩種型號(hào)口罩,購(gòu)進(jìn)醫(yī)用外科口罩袋數(shù)不變,而購(gòu)進(jìn)N95口罩袋數(shù)是第一次的2倍,醫(yī)用外科口罩按原售價(jià)出售,而效果更好的N95口罩打折讓利銷(xiāo)售,若兩種型號(hào)的口罩全部售完,要使第二次銷(xiāo)售活動(dòng)獲利不少于2460元,每袋N95口罩最多打幾折?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)要為學(xué)校科技活動(dòng)小組提供實(shí)驗(yàn)器材,計(jì)劃購(gòu)買(mǎi)A型、B型兩種型號(hào)的放大鏡,若購(gòu)買(mǎi)8個(gè)A型放大鏡和5個(gè)B型放大鏡需用440元;若購(gòu)買(mǎi)4個(gè)A型放大鏡和6個(gè)B型放大鏡需用304元.
(1)求每個(gè)A型放大鏡和每個(gè)B型放大鏡各多少元?
(2)該中學(xué)決定購(gòu)買(mǎi)A型和B型放大鏡共75個(gè),總費(fèi)用不超過(guò)2360元,則最多可以購(gòu)買(mǎi)多少個(gè)A型放大鏡?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,A、B為兩個(gè)村莊,AB、BC、CD為公路,BD為地,AD為河寬,且CD與AD互相垂直.現(xiàn)在要從E處開(kāi)始鋪設(shè)通往村莊A、村莊B的一電纜,共有如下兩種鋪設(shè)方案:
方案一:; 方案二:.
經(jīng)測(cè)量得AB=4千米,BC=10千米,CE=6千米,∠BDC=45°,∠ABD=15°.已知:地下電纜的修建費(fèi)為2萬(wàn)元/千米,水下電纜的修建費(fèi)為4萬(wàn)元/千米.
(1)求出河寬AD(結(jié)果保留根號(hào));
(2)求出公路CD的長(zhǎng);
(3)哪種方案鋪設(shè)電纜的費(fèi)用低?請(qǐng)說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七年級(jí)共有800名學(xué)生,準(zhǔn)備調(diào)查他們對(duì)“低碳”知識(shí)的了解程度.
(1)在確定調(diào)查方式時(shí),團(tuán)委設(shè)計(jì)了以下三種方案:
方案一:調(diào)查七年級(jí)部分女生;
方案二:調(diào)查七年級(jí)部分男生;
方案三:到七年級(jí)每個(gè)班去隨機(jī)調(diào)查一定數(shù)量的學(xué)生.
請(qǐng)問(wèn)其中最具有代表性的一個(gè)方案是 ;
(2)團(tuán)委采用了最具有代表性的調(diào)查方案,并用收集到的數(shù)據(jù)繪制出兩幅不完整的統(tǒng)計(jì)圖(如圖①、圖②所示),請(qǐng)你根據(jù)圖中信息,將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在扇形統(tǒng)計(jì)圖中,“比較了解”所在扇形的圓心角的度數(shù)是 .
(4)請(qǐng)你估計(jì)該校七年級(jí)約有 名學(xué)生比較了解“低碳”知識(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】丁老師為了解所任教的兩個(gè)班的學(xué)生數(shù)學(xué)學(xué)習(xí)情況,對(duì)數(shù)學(xué)進(jìn)行了一次測(cè)試,獲得了兩個(gè)班的成績(jī)(百分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行整理、描述和分析,下面給出了部分信息.
①A、B兩班學(xué)生(兩個(gè)班的人數(shù)相同)數(shù)學(xué)成績(jī)不完整的頻數(shù)分布直方圖如下(數(shù)據(jù)分成5組:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):
②A、B兩班學(xué)生測(cè)試成績(jī)?cè)?/span>80≤x<90這一組的數(shù)據(jù)如下:
A班:80 80 82 83 85 85 86 87 87 87 88 89 89
B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89
③A、B兩班學(xué)生測(cè)試成績(jī)的平均數(shù)、中位數(shù)、方差如下:
平均數(shù) | 中位數(shù) | 方差 | |
A班 | 80.6 | m | 96.9 |
B班 | 80.8 | n | 153.3 |
根據(jù)以上信息,回答下列問(wèn)題:
(1)補(bǔ)全數(shù)學(xué)成績(jī)頻數(shù)分布直方圖;
(2)寫(xiě)出表中m、n的值;
(3)請(qǐng)你對(duì)比分析A、B兩班學(xué)生的數(shù)學(xué)學(xué)習(xí)情況(至少?gòu)膬蓚(gè)不同的角度分析).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校教學(xué)樓AB后方有一斜坡,斜坡與教學(xué)樓剖面在同一平面內(nèi),已知斜坡CD的長(zhǎng)為6m,坡度i=1:0.75,教學(xué)樓底部到斜坡底部的水平距離AC=8m,在教學(xué)樓頂部B點(diǎn)測(cè)得斜坡頂部D點(diǎn)的俯角為46°,則教學(xué)樓的高度約為( )
(參考數(shù)據(jù):sin46°≈0.72,cos46°≈0.69,tan46°≈1.04).
A.12.1mB.13.3m
C.16.9mD.18.1m
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com