【題目】6分)如圖所示,將直尺擺放在三角板ABC上,使直尺與三角板的邊分別交于點DE,F,G,量得∠CGD=42°。

1)求∠CEF的度數(shù);

2)將直尺向下平移,使直尺的邊緣通過三角板的頂點B,交AC邊于點H,如圖所示.點H,B在直尺上的讀數(shù)分別為4,134,求BC的長(結(jié)果保留兩位小數(shù)).

(參考數(shù)據(jù):sin42°≈067,cos42°≈074,tan42°≈090

【答案】1∠CEF=48°;

2BC的長為696m

【解析】試題分析:(1)由DG//EF,可知要求∠CEF的度數(shù),需求出∠CDG的度數(shù),而在△CDG在,∠C=90°,∠CGD42°,從而得解.

2)由已知可得CBH=42°,由三角函數(shù)即可得;

試題解析:(1∵ ∠CGD42°,∠C90°∴ ∠CDG90°42°48°,∵ DG∥EF∴∠CEF=∠CDG=48°;

2HB的讀數(shù)分別為4,134,∴HB=134-4=94,∴BC=HBcos42°≈94×074≈696m),答:BC的長為696m

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】小明和幾位同學做手的影子游戲時,發(fā)現(xiàn)對于同一物體,影子的大小與光源到物體的距離有關(guān).因此,他們認為:可以借助物體的影子長度計算光源到物體的位置.于是,他們做了以下嘗試.

1)如圖,垂直于地面放置的正方形框架ABCD,邊長AB30cm,在其正上方有一燈泡,在燈泡的照射下,正方形框架的橫向影子A′B,D′C的長度和為6cm.那么燈泡離地面的高度為 .

2)不改變中燈泡的高度,將兩個邊長為30cm的正方形框架按圖擺放,請計算此時橫向影子AB,DC的長度和為多少?

3)有n個邊長為a的正方形按圖擺放,測得橫向影子AB,DC的長度和為b,求燈泡離地面的距離.(寫出解題過程,結(jié)果用含a,b,n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,二次函數(shù)y1=(x﹣2)(x﹣4)的圖象與x軸交于A、B兩點(點A在點B的左側(cè)),其對稱軸l與x軸交于點C,它的頂點為點D.

(1)寫出點D的坐標

(2)點P在對稱軸l上,位于點C上方,且CP=2CD,以P為頂點的二次函數(shù)y2=ax2+bx+c(a≠0)的圖象過點A.

①試說明二次函數(shù)y2=ax2+bx+c(a≠0)的圖象過點B;

②點R在二次函數(shù)y1=(x﹣2)(x﹣4)的圖象上,到x軸的距離為d,當點R的坐標為 時,二次函數(shù)y2=ax2+bx+c(a≠0)的圖象上有且只有三個點到x軸的距離等于2d;

③如圖2,已知0<m<2,過點M(0,m)作x軸的平行線,分別交二次函數(shù)y1=(x﹣2)(x﹣4)y2=ax2+bx+c(a≠0)的圖象于點E、F、G、H(點E、G在對稱軸l左側(cè)),過點H作x軸的垂線,垂足為點N,交二次函數(shù)y1=(x﹣2)(x﹣4)的圖象于點Q,若△GHN∽△EHQ,求實數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角三角形中,.

1)如圖1,點在線段上,在線段的延長線上取一點,使得.過點,交延長線于點,過點,交于點,交于點.判斷有怎樣的數(shù)量關(guān)系,寫出你的結(jié)論,并加以證明;

2)如圖2,點在線段的延長線上,在線段的延長線上取一點,使得.過點于點,過點,交延長線于點,交延長線于點.

①依題意補全圖形;

②若,求證:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】星光櫥具店購進電飯煲和電壓鍋兩種電器進行銷售,其進價與售價如表:

售價(元/臺)

售價(元/臺)

電飯煲

200

250

電壓鍋

160

200

(1)一季度,櫥具店購進這兩種電器共30臺,用去了5600元,并且全部售完,問櫥具店在該買賣中賺了多少錢?

(2)為了滿足市場需求,二季度櫥具店決定用不超過9000元的資金采購電飯煲和電壓鍋共50,且電飯煲的數(shù)量不少于23,問櫥具店有哪幾種進貨方案?并說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從謝家集到田家庵有3路,121路,26路三條不同的公交線路.為了解早高峰期間這三條線路上的公交車從謝家集到田家庵的用時時間,在每條線路上隨機選取了450個班次的公交車,收集了這些班次的公交車用時(單位:分鐘)的數(shù)據(jù),統(tǒng)計如下:

用時的頻數(shù) 用時

線路

合計

3

260

167

23

450

121

160

166

124

450

26

50

122

278

450

早高峰期間,乘坐__________(“3”,“121“26路”)線路上的公交車,從謝家集到田家庵“用時不超過50分鐘”的可能性最大.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著科技的發(fā)展,某快遞公司為了提高分揀包裹的速度,使用機器人代替人工進行包裹分揀,若甲機器人工作,乙機器人工作,一共可以分揀700件包裹;若甲機器人工作,乙機器人工作,一共可以分揀650件包裹.

1)求甲、乙兩機器人每小時各分揀多少件包裹;

2)去年雙十一期間,快遞公司的業(yè)務(wù)量猛增,為了讓甲、乙兩機器人每天分揀包裹的總數(shù)量不低于2250件,則它們每天至少要一起工作多少小時?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】尺規(guī)作圖與圖形變換

(尺規(guī)作圖)(不寫作法,保留作圖痕跡)

如圖,一輛汽車在直線形的公路上由點A向點B行駛,M,N 是分別位于公路兩側(cè)的村莊.

1)在圖1中求作一點P,使汽車行駛到此位置時,與村莊MN的距離之和最。

2)在圖2中求作一點Q,使汽車行駛到此位置時,與村莊 M,N 的距離相等.

(圖形變換)

如圖3所示,在正方形網(wǎng)格中,△ABC為格點三角形(即三角形的頂點都在格點上).

3)把△ABC 沿 BA 方向平移后,點 A 移到點,請你在網(wǎng)格中畫出平移后得到的;

4)把繞點 按逆時針方向旋轉(zhuǎn) 90°,請你在網(wǎng)格中畫出旋轉(zhuǎn)后的

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)解不等式:,并把它的解集表示在數(shù)軸上;

2)解不等式組,并寫出它的所有非負整數(shù)解.

查看答案和解析>>

同步練習冊答案