【題目】如圖,AB、CD為兩個(gè)建筑物,建筑物AB的高度為60米,從建筑物AB的頂點(diǎn)A點(diǎn)測(cè)得建筑物CD的頂點(diǎn)C點(diǎn)的俯角∠EAC為30°,測(cè)得建筑物CD的底部D點(diǎn)的俯角∠EAD為45°.
(1)求兩建筑物底部之間水平距離BD的長(zhǎng)度;
(2)求建筑物CD的高度(結(jié)果保留根號(hào)).
【答案】(1)60;(2).
【解析】試題分析:
(1)由已知可判斷△ABD是等腰直角三角形;
(2)過(guò)點(diǎn)A作DC延長(zhǎng)線的垂線,垂足為點(diǎn)F,則在Rt△AFC,求出FC的長(zhǎng),再求CD的長(zhǎng).
試題解析:
(1)根據(jù)題意得:BD∥AE,
∴∠ADB=∠EAD=45°,
∵∠ABD=90°,
∴∠BAD=∠ADB=45°,
∴BD=AB=60,
∴兩建筑物底部之間水平距離BD的長(zhǎng)度為60米;
(2)延長(zhǎng)AE、DC交于點(diǎn)F,
根據(jù)題意得四邊形ABDF為正方形,
∴AF=BD=DF=60,
在Rt△AFC中,∠FAC=30°,
∴CF=AFtan∠FAC=60×=20,
又∵FD=60,
∴CD=60﹣20,
∴建筑物CD的高度為(60﹣20)米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知C,D是線段AB上的兩個(gè)點(diǎn),M,N分別為AC,BD的中點(diǎn).
(1)若,求的長(zhǎng)及MN的長(zhǎng);
(2)如果,用含a,b的式子表示MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,DE⊥AC于E,∠EDC:∠EDA=1:3 ,且AC=12,則DE的長(zhǎng)度是( )
A. 3B. 6C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將正整數(shù)1至2018按一定的規(guī)律排成下圖所示的10列,規(guī)定從上到下依次為1行、2行、3行…,從左到右依次為第1列至第10列.
(1)數(shù)2018在 行, 列;
(2)把圖中帶陰影的3個(gè)方相當(dāng)作一個(gè)整體平移,設(shè)被框住的3個(gè)數(shù)中,最大的一個(gè)數(shù)為x.
①求被框住的三個(gè)數(shù)的和(用含x的式子表示);
②被框住的三個(gè)數(shù)的和能否于2017?若能,求出x的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩家超市的促銷信息如下:
甲超市 | 消費(fèi)金額 | 500元以內(nèi)(不含500元) | 500元以上(含500元) |
優(yōu)惠方式 | 不優(yōu)惠 | 500元部分(含500元)9折優(yōu)惠,超過(guò)500元部分給予8折優(yōu)惠 | |
乙超市 | 優(yōu)惠方式 | 全場(chǎng)8.8折 |
(1)若小白購(gòu)買商品400元,則他到甲、乙兩家超市的實(shí)際消費(fèi)金額分別為 元和 元;
(2)①若小白一次性購(gòu)物金額為m(m>0)元,當(dāng)在甲、乙兩家超市實(shí)際消費(fèi)金額一樣時(shí),求m的值:
②綜合上述分析,可以發(fā)現(xiàn): 時(shí),去甲超市購(gòu)物省錢; 時(shí),去乙超市購(gòu)物省錢.
(3)若小白一次先在甲超市購(gòu)買100元商品,又在乙超市買500元商品,如果第二次他把第一次購(gòu)買的商品合并為一次購(gòu)買,他最多可以比第一次實(shí)際消費(fèi)節(jié)省多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線與x軸相交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸交于點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn),連接AD、BD.
求△ABD的面積;
如圖2,連接AC、BC,若點(diǎn)P是直線AC上方拋物線上一動(dòng)點(diǎn),過(guò)P作PE//BC交AC于點(diǎn)E,作PQ//y軸交AC于點(diǎn)Q,當(dāng)△PQE周長(zhǎng)最大時(shí),將△PQE沿著直線AC平移,記移動(dòng)中的△PQE為,連接,求△PQE的周長(zhǎng)的最大值及的最小值;
如圖3,點(diǎn)G為x軸正半軸上一點(diǎn),且OG=OC,連接CG,過(guò)G作GH⊥AC于點(diǎn)H,將△CGH繞點(diǎn)O順時(shí)針旋轉(zhuǎn)(),記旋轉(zhuǎn)中的△CGH為,在旋轉(zhuǎn)過(guò)程中,直線,分別與直線AC交于點(diǎn)M,N, 能否成為等腰三角形?若能直接寫出所有滿足條件的的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,鐵路MN和公路PQ在點(diǎn)O處交匯,∠QON=30°,公路PQ上A處距O點(diǎn)240米,如果火車行駛時(shí),周圍200米以內(nèi)會(huì)受到噪音的影響,那么火車在鐵路MN上沿ON方向以72千米/時(shí)的速度行駛時(shí),求A處受噪音影響的時(shí)間。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的個(gè)數(shù)是( )
(1)若,則
(2)若,則
(3)若,則
(4)若兩個(gè)角互補(bǔ),則這兩個(gè)角是鄰補(bǔ)角
(5)有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小東設(shè)計(jì)的“作矩形”的尺規(guī)作圖過(guò)程,已知:
求作:矩形
作法:如圖,
①作線段的垂直平分線角交于點(diǎn);
②連接并延長(zhǎng),在延長(zhǎng)線上截取
③連接
所以四邊形即為所求作的矩形
根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過(guò)程
(1)使用直尺和圓規(guī),補(bǔ)全圖形:(保留作圖痕跡)
(2)完成下邊的證明:
證明: ,,
四邊形是平行四邊形( )(填推理的依據(jù))
四邊形是矩形( )(填推理的依據(jù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com