【題目】如圖,四幅圖象分別表示變量之間的關(guān)系,請按圖象的順序,將下面的四種情境與之對應(yīng)排序.正確的順序是(  )

①籃球運(yùn)動員投籃時,投出去的籃球的高度與時間的關(guān)系;

②去超市購買同一單價的水果,所付費(fèi)用與水果數(shù)量的關(guān)系;

③李老師使用的是一種含月租的手機(jī)計費(fèi)方式,則他每月所付話費(fèi)與通話時間的關(guān)系;

④周末,小明從家到圖書館,看了一段時間書后,按原速度原路返回,小明離家的距離與時間的關(guān)系

A. B. C. D.

【答案】D

【解析】

先理解函數(shù)圖像的橫縱坐標(biāo)表示的量,再根據(jù)實際情況來判斷函數(shù)圖像

①籃球運(yùn)動員投籃時,投出去的籃球的高度與時間應(yīng)是拋物線形狀,故①正確;

②去超市購買同一單價的水果,所付費(fèi)用與水果數(shù)量的圖象應(yīng)先從0開始,變大,故④正確;

③李老師使用的是一種含月租的手機(jī)計費(fèi)方式,則他每月所付話費(fèi)與通話時間的應(yīng)先從某一數(shù)值開始,變大,故②正確;

④周末,小明從家到圖書館,看了一段時間書后,按原速度原路返回,小明離家的距離與時間的圖象由0開始,逐漸變大,而后不變,進(jìn)而減小為0,故③正確;

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線ABCD點(diǎn)M,N分別在直線ABCD,點(diǎn)E為平面內(nèi)一點(diǎn).

(1)如圖1,BME,EEND的數(shù)量關(guān)系為 (直接寫出答案);

(2)如圖2BME,EF平分∠MENNP平分∠END,EQNP求∠FEQ的度數(shù)(用用含m的式子表示)

(3)如圖3,點(diǎn)GCD上一點(diǎn),BMNEMN,GEKGEM,EHMNAB于點(diǎn)H,探究∠GEKBMN,GEH之間的數(shù)量關(guān)系(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCDADBC.點(diǎn)P在直線CD上運(yùn)動(點(diǎn)P和點(diǎn)C,D不重合,點(diǎn)P,AB不在同一條直線上),若記∠DAP,∠APB,∠PBC分別為∠α,∠β,∠γ

1)如圖1,當(dāng)點(diǎn)P在線段CD上運(yùn)動時,寫出∠α,∠β,∠γ之間的關(guān)系并說出理由;

2)如圖2,如果點(diǎn)P在線段CD的延長線上運(yùn)動,探究∠α,∠β,∠γ之間的關(guān)系,并說明理由.

3)如圖3BI平分∠PBC,AIBI于點(diǎn)I,交BP于點(diǎn)K,且∠PAI:∠DAI=51,∠APB=20°,∠I=30°,求∠PAI的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓的直徑,C、D是半圓上的兩點(diǎn),且∠BAC=20°,.請連結(jié)線段CB,求四邊形ABCD各內(nèi)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小武新家裝修,在裝修客廳時,購進(jìn)彩色地磚和單色地磚共100塊,共花費(fèi)5600元.已知彩色地磚的單價是80/塊,單色地磚的單價是40/塊.

(1)兩種型號的地磚各采購了多少塊?

(2)如果廚房也要鋪設(shè)這兩種型號的地磚共60塊,且采購地磚的費(fèi)用不超過3200元,那么彩色地磚最多能采購多少塊?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的面積為16cm2,AEF為等腰直角三角形,∠E=90°,AEBC交于點(diǎn)G,AFCD交于點(diǎn)H,則CGH的周長( 。

A. 4cmB. 6cmC. 8cmD. 10cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,下列語句描述正確的是( 。

①若∠1=3,則ABDC;②若∠C+1+4=180°,則ADBC;③∠A=C,∠ABC=ADC,則ABDC;④若∠2=4,BD平分∠ABC,則BC=CD;⑤若ADBC,∠A=C,則ABDC

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)A是雙曲線與直線在第二象限的交點(diǎn),AB垂直軸于點(diǎn)B,且SABO=.

1)求兩個函數(shù)的表達(dá)式;

2)求直線與雙曲線的交點(diǎn)坐標(biāo)和AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩位同學(xué)利用燈光下的影子來測量一路燈A的高度,如圖,當(dāng)甲走到點(diǎn)C處時,乙測得甲直立身高CD與其影子長CE正好相等,接著甲沿BC方向繼續(xù)向前走,走到點(diǎn)E處時,甲直立身高EF的影子恰好是線段EG,并測得EG=2.5m.已知甲直立時的身高為1.75m,求路燈的高AB的長.(結(jié)果精確到0.1m

查看答案和解析>>

同步練習(xí)冊答案