精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在菱形ABCD中,∠A=110°,E,F分別是邊AB和BC的中點,EP⊥CD于點P,則∠FPC的度數為(
A.55°
B.50°
C.45°
D.35°

【答案】A
【解析】解:延長PF交AB的延長線于點G.如圖所示: 在△BGF與△CPF中,
∴△BGF≌△CPF(ASA),
∴GF=PF,
∴F為PG中點.
又∵由題可知,∠BEP=90°,
∴EF= PG,
∵PF= PG,
∴EF=PF,
∴∠FEP=∠EPF,
∵∠BEP=∠EPC=90°,
∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,
∵四邊形ABCD為菱形,
∴AB=BC,∠ABC=180°﹣∠A=70°,
∵E,F分別為AB,BC的中點,
∴BE=BF,∠BEF=∠BFE= (180°﹣70°)=55°,
∴∠FPC=55°;
故選:A.

【考點精析】根據題目的已知條件,利用菱形的性質的相關知識可以得到問題的答案,需要掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】計算:
(1)(﹣2)2+ ﹣(﹣ 0;
(2)(2x+1)(2x﹣1)﹣4(x+1)2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】深圳市政府計劃投資1.4萬億元實施東進戰(zhàn)略.為了解深圳市民對東進戰(zhàn)略的關注情況.某校數學興趣小組隨機采訪部分深圳市民,對采訪情況制作了統(tǒng)計圖表的一部分如下:

關注情況

頻數

頻率

A.高度關注

M

0.1

B.一般關注

100

0.5

C.不關注

30

N

D.不知道

50

0.25


(1)根據上述統(tǒng)計圖可得此次采訪的人數為人,m= , n=;
(2)根據以上信息補全條形統(tǒng)計圖;
(3)根據上述采訪結果,請估計在15000名深圳市民中,高度關注東進戰(zhàn)略的深圳市民約有人.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,分別以點A,B為圓心,大于 AB長為半徑作弧,兩弧分別交于M,N兩點,過M,N兩點的直線交AC于點E,若AC=8,BC=6,則AE的長為(
A.2
B.3
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCD中,AB=3,AD=4,∠ABC=60°,過BC的中點E作EF⊥AB,垂足為點F,與DC的延長線相交于點H.
(1)求證:△BEF≌△CEH;
(2)求DE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數y1=ax+b的圖象分別與x,y軸交于點B,A,與反比例函數y2= 的圖象交于點C,D,CE⊥x軸于點E,tan∠ABO= ,OB=4,OE=2.
(1)求一次函數與反比例函數的解析式;
(2)根據圖象直接寫出當x<0且y1<y2時x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】先化簡,再求值:[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y,其中x= ,y=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC內接于⊙O,AD為邊上的高,將△ADC沿直線AC翻折得到△AEC,延長EA交⊙O于點P,連接FC,交AB于N.
(1)求證:∠BAC=∠ABC+∠ACF;
(2)求證:EF=DB;
(3)若AD=5,CD=10,CB∥AF,求點F到AB的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,頂點為(1,4)的拋物線y=ax2+bx+c與直線y= x+n交于點A(2,2),直線y= x+n與y軸交于點B與x軸交于點C

(1)求n的值及拋物線的解析式
(2)P為拋物線上的點,點P關于直線AB的對稱軸點在x軸上,求點P的坐標
(3)點D為x軸上方拋物線上的一點,點E為軸上一點,以A、B、E、D為頂點的四邊為平行四邊形時,直接寫出點E的坐標.

查看答案和解析>>

同步練習冊答案