【題目】如圖,四邊形是平行四邊形,以為直徑的經(jīng)過點,上一點,且

求證:的切線.

的半徑為,,求的正弦值.

【答案】(1)詳見解析;(2)的正弦值是

【解析】

1)連接ODODCD即可.根據(jù)圓周角定理,AOD=90°,ABCD,可得∠ODC=90°,得證;

2)連接BE則∠AEB=90°,ADE=ABE.在△ABE中根據(jù)三角函數(shù)定義求解

1)連接OD.則∠AOD=2AED=2×45°=90°.

∵四邊形ABCD是平行四邊形,ABDC∴∠CDO=AOD=90°,ODCD,CD與⊙O相切

2)連接BE,由圓周角定理,得∠ADE=ABE

AB是⊙O的直徑,∴∠AEB=90°,AB=2×3=6cm).

RtABE,sinABE==sinADE=sinABE=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象交軸于點和點,交軸于點

求這個二次函數(shù)的表達式;

若點在第二象限內(nèi)的拋物線上,求面積的最大值和此時點的坐標(biāo);

在平面直角坐標(biāo)系內(nèi),是否存在點,使,,四點構(gòu)成平行四邊形?若存在,直接寫出點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,四邊形ABCD是正方形,∠MAN=45°,它的兩邊AM、AN分別交CB、DC與點M、N,連結(jié)MN,作AHMN,垂足為點H

(1)如圖1,猜想AHAB有什么數(shù)量關(guān)系?并證明;

(2)如圖2,已知∠BAC=45°,ADBC于點D,且BD=2,CD=3,求AD的長;

小萍同學(xué)通過觀察圖①發(fā)現(xiàn),ABMAHM關(guān)于AM對稱,AHNADN關(guān)于AN對稱,于是她巧妙運用這個發(fā)現(xiàn),將圖形如圖③進行翻折變換,解答了此題.你能根據(jù)小萍同學(xué)的思路解決這個問題嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小津去某風(fēng)景區(qū)游覽.小明從明橋出發(fā)沿景區(qū)公路騎自行車去陶公亭,同一時刻小津在霞山乘電動汽車出發(fā)沿同一公路去陶公亭,車速為.他們出發(fā)后時,離霞山的路程為,的函數(shù)圖象如圖所示.

1)求直線和直線的函數(shù)表達式;

2)回答下列問題,并說明理由:

①當(dāng)小津追上小明時,他們是否已過了夏池?

②當(dāng)小津到達陶公亭時,小明離陶公亭還有多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AC3BC4,點DAB上,ADAC,AFCDCD于點E,交CB于點F,則CF的長是(。

A.1.5B.1.8C.2D.2.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖內(nèi)接于,,的兩條切線,已知,,則的弧度數(shù)為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線x軸,y軸分別交于AB兩點,點為直線上一點,直線過點C

mb的值;

直線x軸交于點D,動點P從點D開始以每秒1個單位的速度向x軸負(fù)方向運動設(shè)點P的運動時間為t秒.

①若點P在線段DA上,且的面積為10,求t的值;

②是否存在t的值,使為等腰三角形?若存在,直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年平昌冬奧會在29日到25日在韓國平昌郡舉行,為了調(diào)查中學(xué)生對冬奧會比賽項目的了解程度,某中學(xué)在學(xué)生中做了一次抽樣調(diào)查,調(diào)查結(jié)果共分為四個等級:A、非常了解B、比較了解C、基本了解D、不了解.根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了如圖所示的不完整的三種統(tǒng)計圖表.

對冬奧會了解程度的統(tǒng)計表

對冬奧會的了解程度

百分比

A非常了解

10%

B比較了解

15%

C基本了解

35%

D不了解

n%

(1)n=   ;

(2)扇形統(tǒng)計圖中,D部分扇形所對應(yīng)的圓心角是   ;

(3)請補全條形統(tǒng)計圖;

(4)根據(jù)調(diào)查結(jié)果,學(xué)校準(zhǔn)備開展冬奧會的知識競賽,某班要從非常了解程度的小明和小剛中選一人參加,現(xiàn)設(shè)計了如下游戲來確定誰參賽,具體規(guī)則是:把四個完全相同的乒乓球標(biāo)上數(shù)字1,2,3,4然后放到一個不透明的袋中,一個人先從袋中摸出一個球,另一人再從剩下的三個球中隨機摸出一個球,若摸出的兩個球上的數(shù)字和為偶數(shù),則小明去,否則小剛?cè),請用畫樹狀圖或列表的方法說明這個游戲是否公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,平分,且,與相交于點,邊的中點,連接相交于點,下列結(jié)論正確的有( )

;②;③;④是等腰三角形;⑤.

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案