【題目】 中,點(diǎn)邊上一點(diǎn),點(diǎn)中點(diǎn),連接交于點(diǎn),且;

(1)如圖1,若,,求的值;

(2)如圖2,若平分,且,過點(diǎn)于點(diǎn),求證:.

【答案】(1) (2)證明見解析

【解析】

(1)過點(diǎn)作于點(diǎn),根據(jù)平行四邊形的性質(zhì)得到,進(jìn)而證明為等腰直角三角形,根據(jù)勾股定理即可求出的長度,進(jìn)而求出

根據(jù)即可求解.

(2)延長交于點(diǎn),證明 ,得到,證明 ,得到,求出,即可證明.

(1)解:過點(diǎn)作于點(diǎn)

中,

,

,

為等腰直角三角形

,,

,

,

中,,

由勾股定理得:.

(2)證明:延長交于點(diǎn)

中,,則

中點(diǎn)

平分,且

,

,

中,

,

,

,

,

,

,

方法2:可證明四點(diǎn)共圓

方法3: 可求出,利用計(jì)算方法求出

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】音樂噴泉(圖1)可以使噴水造型隨音樂的節(jié)奏起伏變化而變化.某種音樂噴泉形狀如拋物線,設(shè)其出水口為原點(diǎn),出水口離岸邊18m,音樂變化時(shí),拋物線的頂點(diǎn)在直線y=kx上變動(dòng),從而產(chǎn)生一組不同的拋物線(圖2),這組拋物線的統(tǒng)一形式為y=ax2+bx.

(1)若已知k=1,且噴出的拋物線水線最大高度達(dá)3m,求此時(shí)a、b的值;

(2)若k=1,噴出的水恰好達(dá)到岸邊,則此時(shí)噴出的拋物線水線最大高度是多少米?

(3)若k=3,a=﹣,則噴出的拋物線水線能否達(dá)到岸邊?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+2與坐標(biāo)軸相交于A,B兩點(diǎn),與反比例函數(shù)y=在第一象限交點(diǎn)C(1,a).求:

(1)反比例函數(shù)的解析式;

(2)AOC的面積;

(3)不等式x+2﹣<0的解集(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y1的圖象與一次函數(shù)y2ax+b的圖象交于點(diǎn)A(1,4)和點(diǎn)Bm,﹣2).

(1)分別求出這兩個(gè)函數(shù)的關(guān)系式;

(2)觀察圖象,直接寫出關(guān)于x的不等式axb>0的解集;

(3)如果點(diǎn)C與點(diǎn)A關(guān)于x軸對稱,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B是反比例函數(shù)yk≠0)圖象上的兩點(diǎn),延長線段ABy 軸于點(diǎn)C,且點(diǎn)B為線段AC中點(diǎn),過點(diǎn)AADx軸子點(diǎn)D,點(diǎn)E 為線段OD的三等分點(diǎn),且OEDE.連接AE、BE,若SABE7,則k的值為( 。

A. 12 B. 10 C. 9 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊AD與x軸平行,A、B兩點(diǎn)的橫坐標(biāo)分別為1和3,反比例函數(shù)y=的圖象經(jīng)過A、B兩點(diǎn),則菱形ABCD的面積是_____;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在矩形ABCD中,AB=2,BC=6,點(diǎn)E從點(diǎn)D出發(fā),沿DA方向以每秒1個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)F從點(diǎn)B出發(fā),沿射線AB以每秒3個(gè)單位的速度運(yùn)動(dòng),當(dāng)點(diǎn)E運(yùn)動(dòng)到點(diǎn)A時(shí),E、F兩點(diǎn)停止運(yùn)動(dòng).連結(jié)BD,過點(diǎn)E作EH⊥BD,垂足為H,連結(jié)EF,交BD于點(diǎn)G,交BC于點(diǎn)M,連結(jié)CF.

(1)△CDE與△CBF相似嗎?為什么?

(2)求證:∠DBC=∠EFC;

(3)同線段GH的值是定值嗎?如果不是,請說明理由;如果是,求出這個(gè)定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,陽光下,小亮的身高如圖中線段AB所示,他在地面上的影子如圖中線段BC所示,線段DE表示旗桿的高,線段FG表示一堵高墻.

1)請你在圖中畫出旗桿在同一時(shí)刻陽光照射下形成的影子,并用線段表示;

2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗桿的高DE=15m,旗桿與高墻的距離EG=16m,請求出旗桿的影子落在墻上的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一條河的北岸有兩個(gè)目標(biāo)M、N,現(xiàn)在位于它的對岸設(shè)定兩個(gè)觀測點(diǎn)A、B.已知ABMN,在A點(diǎn)測得∠MAB=60°,在B點(diǎn)測得∠MBA=45°,AB=600米.

(1)求點(diǎn)MAB的距離;(結(jié)果保留根號)

(2)B點(diǎn)又測得∠NBA=53°,求MN的長.(結(jié)果精確到1米)

(參考數(shù)據(jù):≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)

查看答案和解析>>

同步練習(xí)冊答案