【題目】小劉同學(xué)在課外活動(dòng)中觀(guān)察吊車(chē)的工作過(guò)程,繪制了如圖所示的平面圖形.已知吊車(chē)吊臂的支點(diǎn)O距離地面的高OO′=2米.當(dāng)?shù)醣垌敹擞?/span>A點(diǎn)抬升至A′點(diǎn)(吊臂長(zhǎng)度不變)時(shí),地面B處的重物(大小忽略不計(jì))被吊至B′處,緊繃著的吊纜A′B′=ABAB垂直地面O′B于點(diǎn)B,A′B′垂直地面O′B于點(diǎn)C,吊臂長(zhǎng)度OA′=OA=10米,且cosA=,sinA′=

(1)求此重物在水平方向移動(dòng)的距離BC;

(2)求此重物在豎直方向移動(dòng)的距離B′C.(結(jié)果保留根號(hào))

【答案】(1)3.(2)(-6)米

【解析】

此題首先把實(shí)際問(wèn)題轉(zhuǎn)化為解直角三角形問(wèn)題來(lái)解決,(1)先過(guò)點(diǎn)OOD⊥AB于點(diǎn)D,交A′C于點(diǎn)E,則得出EC=DB=OO′=2,ED=BC,通過(guò)解直角三角形AODA′OE得出ODOE,從而求出BC.

(2)先解直角三角形A′OE,得出A′E,然后求出B′C.

(1)過(guò)點(diǎn)OOD⊥AB于點(diǎn)D,交A′C于點(diǎn)E

根據(jù)題意可知EC=DB=OO′=2米,ED=BC

∴∠A′ED=∠ADO=90°.

Rt△AOD中,∵cosA=,OA=10米,

∴AD=6米,

∴OD==8米.

Rt△A′OE中,

∵sinA′=

OA′=10

∴OE=5米.

∴BC=ED=OD-OE=8-5=3米.

(2)在Rt△A′OE中,

A′E==5米.

∴B′C=A′C-A′B′

=A′E+CE-AB

=A′E+CE-(AD+BD)

=5+2-(6+2)

=5-6(米).

答:此重物在水平方向移動(dòng)的距離BC3米,此重物在豎直方向移動(dòng)的距離B′C是(5-6)米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】酒局上經(jīng)常兩人玩猜拳游戲.游戲規(guī)則是:每人同時(shí)伸出一只手的幾個(gè)手指(手指數(shù)可以是0、12、34、5),并同時(shí)口中喊出一個(gè)數(shù),若某人喊出的數(shù)恰好等于兩人的手指數(shù)的和,而另一個(gè)人喊出的數(shù)與兩人的手指數(shù)的和不等,就算喊對(duì)的人贏(yíng),輸?shù)娜司鸵染,兩人都喊?duì)了或都沒(méi)喊對(duì),就重來(lái).在某次甲乙兩人猜拳時(shí),甲說(shuō):“我讓讓你,我就喊一個(gè)數(shù)5,其他的數(shù)我都不喊,都?xì)w你喊,如何?”請(qǐng)你用學(xué)過(guò)的概率知識(shí)加以分析,試說(shuō)明甲是否作出了讓步.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,點(diǎn)PAD上,AB=2AP=1.直角尺的直角頂點(diǎn)放在點(diǎn)P處,直角尺的兩邊分別交AB、BC于點(diǎn)E、F,連接EF(如圖1).

(1)當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),點(diǎn)F恰好與點(diǎn)C重合(如圖2).

①求證:△APB∽△DCP;

②求PC、BC的長(zhǎng).

(2)探究:將直角尺從圖2中的位置開(kāi)始,繞點(diǎn)P順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E和點(diǎn)A重合時(shí)停止.在這個(gè)過(guò)程中(1是該過(guò)程的某個(gè)時(shí)刻),觀(guān)察、猜想并解答:

tanPEF的值是否發(fā)生變化?請(qǐng)說(shuō)明理由.

設(shè)AE=x,當(dāng)△PBF是等腰三角形時(shí),請(qǐng)直接寫(xiě)出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于圓O ,ADBC的延長(zhǎng)線(xiàn)相交于點(diǎn)E,ABDC的延長(zhǎng)線(xiàn)相交于點(diǎn)F.

(1)若∠E=500, F=400,求∠A的度數(shù).

(2)探究∠E、∠F、∠A的關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C為ABD外接圓上的一動(dòng)點(diǎn)點(diǎn)C不在上,且不與點(diǎn)B,D重合ACB=ABD=45°

1求證:BD是該外接圓的直徑;

2連結(jié)CD,求證:AC=BC+CD;

3ABC關(guān)于直線(xiàn)AB的對(duì)稱(chēng)圖形為ABM,連接DM,試探究,三者之間滿(mǎn)足的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】節(jié)假日期間向、某商場(chǎng)組織游戲,主持人請(qǐng)三位家長(zhǎng)分別帶自己的孩于參加游戲,AB、C分別表示一位家長(zhǎng),他們的孩子分別對(duì)應(yīng)的是a,b,若主持人分別從三位家長(zhǎng)和三位孩予中各選一人參加游戲.

若已選中家長(zhǎng)A,則恰好選中自己孩子的概率是______

請(qǐng)用畫(huà)樹(shù)狀圖或列表法求出被選中的恰好是同一家庭成員的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,ABAC3,BC6,且若CD經(jīng)過(guò)ABC的外心OABD,則CD_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知銳角三角形ABC內(nèi)接于⊙OADBC,垂足為D

1)如圖1 BDDC,求∠B的度數(shù)

2)如圖2,BEAC,垂足為E,BEAD于點(diǎn)F,過(guò)點(diǎn)BBGAD交⊙O于點(diǎn)GAB邊上取一點(diǎn)H,使得AHBG.求證AFH是等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“測(cè)量物體的高度” 活動(dòng)中,某數(shù)學(xué)興趣小組的3名同學(xué)選擇了測(cè)量學(xué)校里的棵樹(shù)的高度.在同一時(shí)刻的陽(yáng)光下,他們分別做了以下工作:

小芳:測(cè)得一根長(zhǎng)為1米的竹竿的影長(zhǎng)為0.8米甲樹(shù)的影長(zhǎng)為4米如圖1

小華:發(fā)現(xiàn)乙樹(shù)的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上如圖2),墻壁上的影長(zhǎng)為1.2米,落在地面上的影長(zhǎng)為2.4米

小麗:測(cè)量的丙樹(shù)的影子除落在地面上外,還有一部分落在教學(xué)樓的第一級(jí)臺(tái)階上如圖3),測(cè)得此影子長(zhǎng)為0.3米,一級(jí)臺(tái)階高為0.3米落在地面上的影長(zhǎng)為4.5米

1在橫線(xiàn)上直接填寫(xiě)甲樹(shù)的高度為 米.

2求出乙樹(shù)的高度.

3請(qǐng)選擇丙樹(shù)的高度為( )

A、6.5米 B、5. 5米 C、6.3米 D、4.9米

查看答案和解析>>

同步練習(xí)冊(cè)答案