將方程數(shù)學(xué)公式變形為y+2=2y+6,這種變形叫________,其依據(jù)是________.

去分母    等式的基本性質(zhì)
分析:方程兩邊乘以6,利用等式的基本性質(zhì)變形,即去分母即可得到結(jié)果.
解答:將方程變形為y+2=2y+6,這種變形叫去分母,其依據(jù)是等式的基本性質(zhì).
故答案為:去分母;等式的基本性質(zhì)
點(diǎn)評(píng):此題考查了解一元一次方程,其步驟為:去分母,去括號(hào),移項(xiàng)合并,將未知數(shù)系數(shù)化為1,求出解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)先閱讀例題的解答過(guò)程,然后再解答:
代數(shù)第三冊(cè)在解方程3x(x+2)=5(x+2)時(shí),先將方程變形為3x(x+2)-5(x+2)=0,這個(gè)方程左邊可以分解成兩個(gè)一次因式的積,所以方程變形為(x+2)(3x-5)=0.我們知道,如果兩個(gè)因式的積等于0,那么這兩個(gè)因式中至少有一個(gè)等于0;反過(guò)來(lái),如果兩個(gè)因式有一個(gè)等于0,它們的積等于0.因此,解方程(x+2)(3x-5)=0,就相當(dāng)于解方程x+2=0或3x-5=0,得到原方程的解為x1=-2,x2=
5
3

根據(jù)上面解一元二次方程的過(guò)程,王力推測(cè):a﹒b>0,則有
a>0
b>0
a<0
b<0
,請(qǐng)判斷王力的推測(cè)是否正確?若正確,請(qǐng)你求出不等式
5x-1
2x-3
>0的解集,如果不正確,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

材料:為解方程x4-x2-6=0,可將方程變形為(x22-x2-6=0,
然后設(shè)x2=y,則(x22=y2,原方程化為y2-y-6=0…①,
解得y1=-2,y2=3.當(dāng)y1=-2時(shí),x2=-2無(wú)意義,舍去;
當(dāng)y2=3時(shí),x2=3,解得x=±
3

所以原方程的解為x1=
3
,x2=-
3

問(wèn)題:(1)在原方程得到方程①的過(guò)程中,利用
換元
換元
法達(dá)到了降次的目的,體現(xiàn)了
轉(zhuǎn)化
轉(zhuǎn)化
 的數(shù)學(xué)思想;
(2)利用本題的解題方法,解方程(x2-x)2-4(x2-x)-12=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用配方法解方程x2+8x+9=0時(shí),應(yīng)將方程變形為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

材料:為解方程x4-x2-6=0,可將方程變形為(x22-x2-6=0,然后設(shè)x2=y,則(x22=y2,原方程化為y2-y-6=0…①,
解得y1=-2,y2=3.
當(dāng)y1=-2時(shí),x2=-2無(wú)意義,舍去;當(dāng)y2=3時(shí),x2=3,解得x=±
3

所以原方程的解為x1=
3
,x2=-
3

問(wèn)題:利用本題的解題方法,解方程(x2-x)2-4(x2-x)-12=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

能使方程左右兩邊相等的未知數(shù)的①
,叫做方程的解.
求方程的解的②
過(guò)程
過(guò)程
叫做解方程.求方程的解就是將方程變形為③
x=a
x=a
的形式.
等式的兩條性質(zhì)是④
解方程
解方程
的依據(jù).
(1)等式兩邊都加上或減去同一個(gè)數(shù)或同一個(gè)整式,所得結(jié)果仍是⑤
等式
等式

(2)等式兩邊都乘或除以同一個(gè)⑥
不等于0
不等于0
的數(shù),所得結(jié)果仍是等式.
方程中的某些項(xiàng)⑦
改變符號(hào)
改變符號(hào)
后,從方程的一邊移到另一邊,這樣的變形叫做⑧
移項(xiàng)
移項(xiàng)

一般地,解一元一次方程的一般步驟:去分母、⑨
去括號(hào)
去括號(hào)
、移項(xiàng)、⑩
合并同類(lèi)項(xiàng)
合并同類(lèi)項(xiàng)
、未知數(shù)的?
系數(shù)
系數(shù)
化為1.以上步驟不是一成不變的,在解方程時(shí)要根據(jù)方程的特點(diǎn)靈活運(yùn)用這些步驟.
去分母和去括號(hào)時(shí)注意不能漏乘;分?jǐn)?shù)線既具有除號(hào)的作用,又具有括號(hào)的作用,當(dāng)分子是多項(xiàng)式時(shí),去分母后,原先的括號(hào)要補(bǔ)上;另外,移項(xiàng)時(shí)特別注意要改變符號(hào).

查看答案和解析>>

同步練習(xí)冊(cè)答案