【題目】一次函數(shù)y=ax+b(a≠0)與二次函數(shù)ax2+2x+b(a≠0)在同一直角坐標(biāo)系中的圖象可能是( )
A.
B.
C.
D.
【答案】D
【解析】解:A、由拋物線可知,a>0,得b>0,由直線可知,a<0,b>0,故本選項錯誤; B、由拋物線可知,a<0,b>0,由直線可知,a>0,b<0,故本選項錯誤;
C、由拋物線可知,a<0,b>0,由直線可知,a<0,b<0,故本選項錯誤;
D、由拋物線可知,a>0,b>0,由直線可知,a>0,b>0,且交y軸同一點,故本選項正確.
故選D.
【考點精析】本題主要考查了一次函數(shù)的圖象和性質(zhì)和二次函數(shù)的圖象的相關(guān)知識點,需要掌握一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠;二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,輪船在A處觀測燈塔C位于北偏西70°方向上,輪船從A處以每小時20海里的速度沿南偏西50°方向勻速航行,1小時后到達碼頭B處,此時,觀測燈塔C位于北偏西25°方向上,則燈塔C與碼頭B的距離是( )
A.10 海里
B.10 海里
C.10 海里
D.20 海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,∠B=15°,邊AB的垂直平分線交邊BC于點E,垂足為點D,取線段BE的中點F,聯(lián)結(jié)DF.求證:AC=DF.(說明:此題的證明過程需要批注理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究題
【問題提出】
已知任意三角形的兩邊及夾角(是銳角),求三角形的面積.
【問題探究】
為了解決上述問題,讓我們從特殊到一般展開探究.
探究:在Rt△ABC(圖1)中,∠ABC=90°,AC=b,BC=a,∠C=α,求△ABC的面積(用含a、b、α的代數(shù)式表示)
在Rt△ABC中,∠ABC=90°
∴sinα=
∴AB=bsinα
∴S△ABC= BCAB= absinα
(1)探究一:
銳角△ABC(圖2)中,AC=b,BC=a,∠C=α(0°<α<90°)
求:△ABC的面積.(用含a、b、α的代數(shù)式表示)
(2)探究二:
鈍角△ABC(圖3)中,AC=b,BC=a,∠C=α(0°<α<90°)
求:△ABC的面積.(用含a、b、α的代數(shù)式表示)
(3)【問題解決】
用文字?jǐn)⑹觯阂阎我馊切蔚膬蛇吋皧A角(是銳角),求三角形面積的方法
是
(4)已知平行四邊形ABCD(圖4)中,AB=b,BC=a,∠B=α(0°<α<90°)
求:平行四邊形ABCD的面積.(用含a、b、α的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某商場有甲、乙兩種商品,甲種每件進價15元,售價20元;乙種每件進價35元,售價45元.
(1)若商家同時購進甲、乙兩種商品100件,設(shè)甲商品購進x件,售完此兩種商品總利潤為y 元.寫出y與x的函數(shù)關(guān)系式.
(2)該商家計劃最多投入3000元用于購進此兩種商品共100件,則至少要購進多少件甲種商品?若售完這些商品,商家可獲得的最大利潤是多少元?
(3)“五一”期間,商家對甲、乙兩種商品進行表中的優(yōu)惠活動,小王到該商場一次性付款324元購買此類商品,商家可獲得的最小利潤和最大利潤各是多少?
打折前一次性購物總金額 | 優(yōu)惠措施 |
不超過400元 | 售價打九折 |
超過400元 | 售價打八折 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABDC中,∠D=∠B=90°,點O為BD的中點,且AO平分∠BAC.
(1)求證:CO平分∠ACD;
(2)求證:OA⊥OC;
(3)求證:AB+CD=AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究題
問題再現(xiàn):
數(shù)形結(jié)合是解決數(shù)學(xué)問題的一種重要的思想方法,借助這種方法可將抽象的數(shù)學(xué)知識變得直觀起來并且具有可操作性,從而可以幫助我們快速解題.初中數(shù)學(xué)里的一些代數(shù)公式,很多都可以通過表示幾何圖形面積的方法進行直觀推導(dǎo)和解釋.
例如:利用圖形的幾何意義證明完全平方公式.
證明:將一個邊長為a的正方形的邊長增加b,形成兩個矩形和兩個正方形,如圖1:
這個圖形的面積可以表示成:
(a+b)2或a2+2ab+b2
∴(a+b)2 =a2+2ab+b2
這就驗證了兩數(shù)和的完全平方公式.
(1)類比解決:
請你類比上述方法,利用圖形的幾何意義證明平方差公式.(要求畫出圖形并寫出推理過程)
(2)問題提出:如何利用圖形幾何意義的方法證明:13+23=32?
如圖2,
A表示1個1×1的正方形,即:1×1×1=13
B表示1個2×2的正方形,C與D恰好可以拼成1個2×2的正方形,因此:B、C、D就可以表示2個2×2的正方形,即:2×2×2=23
而A、B、C、D恰好可以拼成一個(1+2)×(1+2)的大正方形.
由此可得:13+23=(1+2)2=32
嘗試解決:
請你類比上述推導(dǎo)過程,利用圖形的幾何意義確定:13+23+33= . (要求寫出結(jié)論并構(gòu)造圖形寫出推證過程).
(3)問題拓廣:
請用上面的表示幾何圖形面積的方法探究:13+23+33+…+n3= . (直接寫出結(jié)論即可,不必寫出解題過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,BD垂直平分AC,垂足為點F,E為四邊形ABCD外一點,且∠ADE=∠BAD,AE⊥AC.
(1)求證:四邊形ABDE是平行四邊形;
(2)如果DA平分∠BDE,AB=5,AD=6,求AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com