【題目】如圖,在ABC中,∠ABC=90°OABC外接圓,點D是圓上一點,點D、B分別在AC兩側,且BD=BC,連接AD、BD、OD、CD,延長CB到點P,使∠APB=DCB

1)求證:AP為⊙O的切線;

2)若⊙O的半徑為1,當OED是直角三角形時,求ABC的面積;

3)若BOE、DOE、AED的面積分別為a、bc,試探究a、bc之間的等量關系式,并說明理由.

【答案】1)證明見解析;(2SABC=;(3b2=ac

【解析】試題分析:1欲證明PA是切線,只要證明PAOA即可;
2)分兩種情形分別求解即可;
3)只要證明ADOB,可得△AED∽△OEB,推出,再推出可得=2,b2=ac

試題解析:

1)證明:∵BD=BC

∴∠BDC=BCD,

∵∠P=BCD,BAC=BDC,

∴∠P=BAC,

AC是直徑,

∴∠ABC=ABP=90°,

∴∠P+BAP=90°

∴∠BAP+BAC=90°

∴∠OAP=90°,

OAPA,

PA是⊙O的切線.

2)解:①當∠OED=90°時,CB=CD=BD,ABC是等邊三角形,可得∠ACB=30°,

AC=2

AB=1,BC=,

SABC=

②當∠DOE=90°時,易知∠AOB=45°,ABCAC邊上的高=,

SABC=

3)∵BD=BCOD=OC,BO=BO

∴△BOD≌△BOC,

∴∠OBD=OBC

OB=OD=CO,

∴∠OBD=OBC=ODB=OCB,

∵∠ADB=OCB

∴∠ADB=OBD,

ADOB

∴△AED∽△OEB,

,

=2

b2=ac

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(-4,n),B(2,-4)是一次函數(shù)y=kx+b和反比例函數(shù)y=的圖象的兩個交點.

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為實施鄉(xiāng)村振興戰(zhàn)略,解決某山區(qū)老百姓出行難的問題,當?shù)卣疀Q定修建一條高速公路.其中一段長為146米的山體隧道貫穿工程由甲乙兩個工程隊負責施工.甲工程隊獨立工作2天后,乙工程隊加入,兩工程隊又聯(lián)合工作了1天,這3天共掘進26.已知甲工程隊每天比乙工程隊多掘進2米,按此速度完成這項隧道貫穿工程,甲乙兩個工程隊還需聯(lián)合工作多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段CD在線段AB上,且CD=2,若線段AB的長度是一個正整數(shù),則圖中以A,B,C,D這四點中任意兩點為端點的所有線段長度之和可能是( 。

A. 29

B. 28

C. 30

D. 31

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小方家住戶型呈長方形,平面圖如下(單位:米),現(xiàn)準備鋪設地面,三間臥室鋪設木地板,其它區(qū)城鋪設地磚.

(1)a的值.

(2)鋪設地面需要木地板和地磚各多少平方米(用含的代數(shù)式表示)?

(3)按市場價格,木地板單價為300/平方米,地磚單價為100/平方米,裝修公司有兩種活動方案,如表:

活動方案

木地板價格

地磚價格

總安裝費

A

8

8.5

2000

B

9

8.5

免收

已知臥室2的面積是21平方米,則小方家應選擇哪種活動,使鋪設地面的總費用(包括材料費及安裝費)更低?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=7,AC=6,∠A=45°,點D、E分別在邊AB、BC上,將△BDE沿著DE所在直線翻折,點B落在點P處,PD、PE分別交邊AC于點M、N,如果AD=2,PD⊥AB,垂足為點D,那么MN的長是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】目前節(jié)能燈在城市已基本普及,某商場計劃購進甲、乙兩種節(jié)能燈共1200只,這兩種節(jié)能燈的進價、售價如下表:

進價

售價

甲型

25

30

乙型

45

60

如何進貨,進貨款恰好為46000元?

為確保乙型節(jié)能燈順利暢銷,在的條件下,商家決定對乙型節(jié)能燈進行打折出售,且全部售完后,乙型節(jié)能燈的利潤率為,請問乙型節(jié)能燈需打幾折?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y= x3與反比例函數(shù)y= 的圖象相交于點A(4,n),與x軸相交于點B.

(1)填空:n的值為___,k的值為___;

(2)AB為邊作菱形ABCD,使點Cx軸正半軸上,點D在第一象限,求點D的坐標;

(3)觀察反比例函數(shù)y=的圖象,當y2時,請直接寫出自變量x的取值范圍。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標分別為A(1,1)、B(4,2)、C(3,4).

(1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;

(2)請畫出△ABC關于x軸對稱的△A2B2C2三個頂點A2、B2、C2的坐標;

(3)x軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.

查看答案和解析>>

同步練習冊答案