【題目】已知拋物線.

1)該拋物線的對稱軸是直線___________,頂點(diǎn)坐標(biāo)是___________;

2)選取適當(dāng)?shù)臄?shù)據(jù)填入下表,并在圖中的直角坐標(biāo)系內(nèi)畫出該拋物線的圖像;

3)根據(jù)圖像回答,有實(shí)數(shù)根,此時的取值范圍。

【答案】1x=1,(1,3);(2)見詳解;(3k≤3.

【解析】

1)代入對稱軸公式和頂點(diǎn)公式 即可;
2)盡量讓x選取整數(shù)值,通過解析式可求出對應(yīng)的y的值,填表即可;
3有實(shí)數(shù)根即為與直線有交點(diǎn),根據(jù)圖像即可知k的取值范圍.

解:(1)在中,

,

所以對稱軸為直線x=1;

又∵,

所以頂點(diǎn)坐標(biāo)為(13.

2)數(shù)據(jù)和圖像如下所示:

x

1

0

1

2

3

y

1

2

3

2

1

3有實(shí)數(shù)根即為與直線有交點(diǎn),

根據(jù)圖像即可知函數(shù)的最大值為3,即k≤3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)2014年投入教育經(jīng)費(fèi)200萬元,2016年投入教育經(jīng)費(fèi)242萬元.

(1)求2014年至2016年該地區(qū)投入教育經(jīng)費(fèi)的年平均增長率;

(2)根據(jù)(1)所得的年平均增長率,預(yù)計2017年該地區(qū)將投入教育經(jīng)費(fèi)多少萬元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了慶祝建國七十周年,決定舉辦一臺文藝晚會,為了了解學(xué)生最喜愛的節(jié)目形式,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,規(guī)定每人從歌曲,舞蹈,小品,相聲其它五個選項中選擇一個,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖表,請根據(jù)圖中信息,解答下列題:

最喜愛的節(jié)目

人數(shù)

歌曲

15

舞蹈

a

小品

12

相聲

10

其它

b

1)在此次調(diào)查中,該校一共調(diào)查了   名學(xué)生;

2a   ;b   ;

3)在扇形計圖中,計算歌曲所在扇形的圓心角的度數(shù);

4)若該校共有1200名學(xué)生,請你估計最喜愛相聲的學(xué)生的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,風(fēng)車的支桿OE垂直于桌面,風(fēng)車中心O到桌面的距離OE25cm,小小風(fēng)車在風(fēng)吹動下繞著中心O不停地轉(zhuǎn)動,轉(zhuǎn)動過程中,葉片端點(diǎn)AB、C、D在同一圓O上,已知⊙O的半徑為10cm,

1)風(fēng)車在轉(zhuǎn)動過程中,當(dāng)∠AOE=30°時,求點(diǎn)A到桌面的距離.

2)在風(fēng)車轉(zhuǎn)動一周的過程中,求點(diǎn)A相對于桌面的高度不超過20cm所經(jīng)過的路線長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一堂數(shù)學(xué)實(shí)踐課上,趙老師給出了下列問題:

(提出問題)

1)如圖1,在△ABC中,EBC的中點(diǎn),PAE的中點(diǎn),就稱CP是△ABC的“雙中線”,∠ACB90°,AC3,AB5.則CP   

(探究規(guī)律)

2)在圖2中,E是正方形ABCD一邊上的中點(diǎn),PBE上的中點(diǎn),則稱AP是正方形ABCD的“雙中線”,若AB4.則AP的長為   (按圖示輔助線求解);

3)在圖3中,AP是矩形ABCD的“雙中線”,若AB4,BC6,請仿照(2)中的方法求出AP的長,并說明理由;

(拓展應(yīng)用)

4)在圖4中,AP是平行四邊形ABCD的“雙中線”,若AB4,BC10,∠BAD120°.求出△ABP的周長,并說明理由?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖ABC內(nèi)接于⊙O,OHACH,過A點(diǎn)的切線與OC的延長線交于點(diǎn)D,∠B30°,OH5

1)求⊙O的半徑;

2)求出劣弧AC的長(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是某座拋物線型的隧道示意圖,已知路面AB24米,拋物線最高點(diǎn)C到路面AB的距離為8米,為保護(hù)來往車輛的安全,在該拋物線上距路面AB高為6米的點(diǎn)E,F處要安裝兩盞警示燈,求這兩盞燈的水平距離EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校創(chuàng)客社團(tuán)計劃利用新購買的無人機(jī)設(shè)備測量學(xué)校旗桿的高.他們先將無人機(jī)放在旗桿前的點(diǎn)處(無人機(jī)自身的高度忽略不計),測得此時點(diǎn)的仰角為,因為旗桿底部有臺階,所以不能直接測出垂足到點(diǎn)的距離.無人機(jī)起飛后,被風(fēng)吹至點(diǎn)處,此時無人機(jī)距地面的高度為3米,測得此時點(diǎn)的俯角為,點(diǎn)的仰角為,且點(diǎn),,在同一平面內(nèi),求旗桿的高度.(計算結(jié)果精確到0.1米,參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知、是一次函數(shù)的圖象與反比例函數(shù)的圖象的兩個交點(diǎn).

1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

2)根據(jù)圖象寫出使一次函數(shù)的函數(shù)值小于反比例函數(shù)的函數(shù)值的x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案