在△ABC中,,且兩邊長分別為4 cm和5 cm,若以點A為圓心,3 cm為半徑作⊙A,以點B為圓心,2 cm為半徑作⊙B,則⊙A和⊙B位置關(guān)系是

[  ]
A.

只有外切一種情況;

B.

只有外離一種情況;

C.

有相交或外切兩種情況;

D.

有外離或外切兩種情況.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,已知AB=2a,∠A=30°,CD是AB邊的中線,若將△ABC沿CD對折起來,折疊后兩個小△ACD與△BCD重疊部分的面積恰好等于折疊前△ABC的面積的
1
4
,有如下結(jié)論:①BC的邊長等于a; ②折疊前的△ABC的面積可以等于
3
3
a2
;③折疊后,以A、B為端點的線段與中線CD平行且相等,其中正確的結(jié)論是
①③
①③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•東營)(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.
證明:DE=BD+CE.
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•柳州)有下列4個命題:
①方程x2-(
2
+
3
)x+
6
=0的根是
2
3

②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD=
9
4
,則CD=3.
③點P(x,y)的坐標x,y滿足x2+y2+2x-2y+2=0,若點P也在y=
k
x
的圖象上,則k=-1.
④若實數(shù)b、c滿足1+b+c>0,1-b+c<0,則關(guān)于x的方程x2+bx+c=0一定有兩個不相等的實數(shù)根,且較大的實數(shù)根x0滿足-1<x0<1.
上述4個命題中,真命題的序號是
①②③④
①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•通州區(qū)一模)小明在學習軸對稱的時候,老師留了這樣一道思考題:如圖,已知在直線l的同側(cè)有A、B兩點,請你在直線l上確定一點P,使得PA+PB的值最。∶魍ㄟ^獨立思考,很快得出了解決這個問題的正確方法,他的作法是這樣的:
①作點A關(guān)于直線l的對稱點A′.
②連接A′B,交直線l于點P.則點P為所求.請你參考小明的作法解決下列問題:
(1)如圖1,在△ABC中,點D、E分別是AB、AC邊的中點,BC=6,BC邊上的高為4,請你在BC邊上確定一點P,使得△PDE的周長最。
①在圖1中作出點P.(三角板、刻度尺作圖,保留作圖痕跡,不寫作法)
②請直接寫出△PDE周長的最小值
8
8

(2)如圖2在矩形ABCD中,AB=4,BC=6,G為邊AD的中點,若E、F為邊AB上的兩個動點,點E在點F左側(cè),且EF=1,當四邊形CGEF的周長最小時,請你在圖2中確定點E、F的位置.(三角板、刻度尺作圖,保留作圖痕跡,不寫作法),并直接寫出四邊形CGEF周長的最小值
6+3
10
6+3
10

查看答案和解析>>

同步練習冊答案