【題目】如圖,在平面直角坐標(biāo)系中,∠AOB=90°,AB∥x軸,OA=2,雙曲線經(jīng)過點(diǎn)A.將△AOB繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使點(diǎn)O的對應(yīng)點(diǎn)D落在x軸的負(fù)半軸上,若AB的對應(yīng)線段AC恰好經(jīng)過點(diǎn)O.
(1)求點(diǎn)A的坐標(biāo)和雙曲線的解析式;
(2)判斷點(diǎn)C是否在雙曲線上,并說明理由
【答案】(1),雙曲線的解析式為;(2)點(diǎn)在雙曲線上,理由見解析.
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)和平行線的性質(zhì),得到,得到△AOD是等邊三角形,根據(jù)特殊角的三角函數(shù),求出點(diǎn)A的坐標(biāo),然后得到雙曲線的解析式;
(2)先求出OC的長度,然后利用特殊角的三角函數(shù)求出點(diǎn)C的坐標(biāo),然后進(jìn)行判斷即可.
解:(1)過點(diǎn)A作軸,垂足為.
∵軸,
.
有旋轉(zhuǎn)的性質(zhì)可知,.
.
.
為等邊三角形.
.
,
.
點(diǎn)的坐標(biāo)為.
由題意知,,.
雙曲線的解析式為:.
(2)點(diǎn)在雙曲線上,理由如下:
過點(diǎn)作軸,垂足為.
由(1)知,.
.
.
,
.
點(diǎn)的坐標(biāo)為.
將代入中,.
點(diǎn)在雙曲線上.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線yx2bxc交x軸于點(diǎn)A,B,點(diǎn)B的坐標(biāo)為(4,0),與y軸于交于點(diǎn)C(0,﹣2).
(1)求此拋物線的解析式;
(2)在拋物線上取點(diǎn)D,若點(diǎn)D的橫坐標(biāo)為5,求點(diǎn)D的坐標(biāo)及∠ADB的度數(shù);
(3)在(2)的條件下,設(shè)拋物線對稱軸交x軸于點(diǎn)H,△ABD的外接圓圓心為M(如圖1),
①求點(diǎn)M的坐標(biāo)及⊙M的半徑;
②過點(diǎn)B作⊙M的切線交于點(diǎn)P(如圖2),設(shè)Q為⊙M上一動點(diǎn),則在點(diǎn)Q運(yùn)動過程中的值是否變化?若不變,求出其值;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一內(nèi)部裝有水的直圓柱形水桶,桶高;另有一直圓柱形的實(shí)心鐵柱,柱高,直立放置于水桶底面上,水桶內(nèi)的水面高度為,且水桶與鐵柱的底面半徑比為.今小賢將鐵柱移至水桶外部,過程中水桶內(nèi)的水量未改變,若不計(jì)水桶厚度,則水桶內(nèi)的水面高度變?yōu)椋?/span> )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大黃魚是中國特有的地方性魚類,有“國魚”之稱,由于過去濫捕等多種因素,大黃魚資源已基本枯竭,目前,我市已培育出十余種大黃魚品種,某魚苗人工養(yǎng)殖基地對其中的四個(gè)品種“寧港”、“御龍”、“甬岱”、“象山港”共300尾魚苗進(jìn)行成活實(shí)驗(yàn),從中選出成活率最高的品種進(jìn)行推廣,通過實(shí)驗(yàn)得知“甬岱”品種魚苗成活率為,并把實(shí)驗(yàn)數(shù)據(jù)繪制成下列兩幅統(tǒng)計(jì)圖(部分信息未給出):
(1) 求實(shí)驗(yàn)中“寧港”品種魚苗的數(shù)量;
(2) 求實(shí)驗(yàn)中“甬岱”品種魚苗的成活數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)你認(rèn)為應(yīng)選哪一品種進(jìn)行推廣?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商家經(jīng)銷一種綠茶,用于裝修門面已投資4000元已知綠茶每千克成本40元,經(jīng)研究發(fā)現(xiàn)銷量y(kg)與銷售單價(jià)x(元/kg)之間的函數(shù)關(guān)系是().以該綠茶的月銷售利潤為w(元)[銷售利潤(每千克單價(jià)每千克成本)銷售量]
(1)求m與之間的函數(shù)關(guān)系式,并求出x為何值時(shí),w的值最大?
(2)若在第一個(gè)月里,按使w獲得最大值的銷售單價(jià)進(jìn)行銷售后,在第二個(gè)月里受物價(jià)部門干預(yù),銷售單價(jià)不得高于85元,要想在全部收回投資的基礎(chǔ)上使第二個(gè)月的利潤達(dá)到2200元,那么第二個(gè)月里應(yīng)該確定銷售單價(jià)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為弓形AB的弦,AB=2,弓形所在圓⊙O的半徑為2,點(diǎn)P為弧AB上動點(diǎn),點(diǎn)I為△PAB的內(nèi)心,當(dāng)點(diǎn)P從點(diǎn)A向點(diǎn)B運(yùn)動時(shí),點(diǎn)I移動的路徑長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形.Rt△ABC的頂點(diǎn)均在格點(diǎn)上,建立平面直角坐標(biāo)系后,點(diǎn)A的坐標(biāo)為(﹣4,1),點(diǎn)B的坐標(biāo)為(﹣1,1).
(1)先將Rt△ABC向右平移5個(gè)單位,再向下平移1個(gè)單位后得到Rt△A1B1C1.試在圖中畫出圖形Rt△A1B1C1,并寫出A1的坐標(biāo);
(2)將Rt△A1B1C1繞點(diǎn)A1順時(shí)針旋轉(zhuǎn)90°后得到Rt△A2B2C2,試在圖中畫出圖形Rt△A2B2C2.并計(jì)算Rt△A1B1C1在上述旋轉(zhuǎn)過程中C1所經(jīng)過的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小東設(shè)計(jì)的“過圓外一點(diǎn)作這個(gè)圓的兩條切線”的尺規(guī)作圖過程.
已知:⊙O及⊙O外一點(diǎn)P.
求作:直線PA和直線PB,使PA切⊙O于點(diǎn)A,PB切⊙O于點(diǎn)B.
作法:如圖,
①連接OP,分別以點(diǎn)O和點(diǎn)P為圓心,大于OP的同樣長為半徑作弧,兩弧分別交于點(diǎn)M,N;
②連接MN,交OP于點(diǎn)Q,再以點(diǎn)Q為圓心,OQ的長為半徑作弧,交⊙O于點(diǎn)A和點(diǎn)B;
③作直線PA和直線PB.
所以直線PA和PB就是所求作的直線.
根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵OP是⊙Q的直徑,
∴ ∠OAP=∠OBP=________°( )(填推理的依據(jù)).
∴PA⊥OA,PB⊥OB.
∵OA,OB為⊙O的半徑,
∴PA,PB是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線l1:y1=a(x+1)2+2與l2:y2=﹣(x﹣2)2﹣1交于點(diǎn)B(1,﹣2),且分別與y軸交于點(diǎn)D、E.過點(diǎn)B作x軸的平行線,交拋物線于點(diǎn)A、C,則以下結(jié)論:
①無論x取何值,y2總是負(fù)數(shù);
②l2可由l1向右平移3個(gè)單位,再向下平移3個(gè)單位得到;
③當(dāng)﹣3<x<1時(shí),隨著x的增大,y1﹣y2的值先增大后減;
④四邊形AECD為正方形.
其中正確的是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com