【題目】如圖,CN是等邊的外角內(nèi)部的一條射線,點A關(guān)于CN的對稱點為D,連接AD,BD,CD,其中AD,BD分別交射線CN于點EP

(1)依題意補全圖形;

2)若,求的大。ㄓ煤的式子表示);

3)用等式表示線段 之間的數(shù)量關(guān)系,并證明.

【答案】(1)圖形見解析(2)∠BDC=60°-α(3)PB=PC+2PE

【解析】試題分析:(1)按題意補全圖形即可;

(2)由點A與點D關(guān)于CN對稱可得CA=CD,再由∠ACN=α得到∠ACD=2α,由等邊△ABC可推得∠BCD=∠ACB+∠ACD=60°+2α,從而可得;

(3)PB=PC+2PE. 在PB上截取PF使PF=PC,連接CF,通過推導(dǎo)可證明△BFC≌△DPC,再利用全等三角形的對應(yīng)邊相等即可得.

試題解析:(1)如圖所示;

(2)∵點A與點D關(guān)于CN對稱,

CNAD的垂直平分線,

CA=CD,

,

∴∠ACD=2,

∵等邊△ABC

CA=CB=CD,∠ACB=60°,

∴∠BCD=∠ACB+∠ACD=60°+,

∴∠BDC=∠DBC=(180°BCD)=60°

(3)結(jié)論:PB=PC+2PE

本題證法不唯一,如:

PB上截取PF使PF=PC,連接CF

CA=CD,∠ACD=

∴∠CDA=∠CAD=90°

∵∠BDC=60°

∴∠PDE=∠CDABDC=30°

PD=2PE

∵∠CPF=∠DPE=90°PDE=60°.

∴△CPF是等邊三角形.

∴∠CPF=∠CFP=60°.

∴∠BFC=∠DPC=120°.

∴在△BFC和△DPC中,

,

∴△BFC≌△DPC

BF=PD=2PE

PB= PF+BF=PC+2PE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】推理填空:如圖,E點為DF上的點,BAC上的點, ,那么,請完成它成立的理由

解: ______

______

______ ______ ______

______

______

______

______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司投資某個工程項目,現(xiàn)在甲、乙兩個工程隊有能力承包這個項目.公司調(diào)查發(fā)現(xiàn):乙隊單獨完成工程的時間是甲隊的倍;甲、乙兩隊合作完成工程需要天;甲隊每天的工作費用為元、乙隊每天的工作費用為元.根據(jù)以上信息,從節(jié)約資金的角度考慮,公司應(yīng)選擇哪個工程隊、應(yīng)付工程隊費用多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠B=C=90°,MBC的中點,DM平分∠ADC,則AM平分∠DAB嗎?試說明理由。(提示:過點MME垂直ADE)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,C⊙O上一點,OD⊥BC于點D,過點C⊙O的切線,交OD的延長線于點E,連接BE

1)求證:BE⊙O相切;

2)設(shè)OE⊙O于點F,若DF=1,BC=2,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點P(1,0).點P第1次向上跳動1個單位至點P1(1,1),緊接著第2次向左跳動2個單位至點P2(-1,1),第3次向上跳動1個單位至點P3,第4次向右跳動3個單位至點P4,第5次又向上跳動1個單位至點P5,第6次向左跳動4個單位至點P6,…….照此規(guī)律,點P第100次跳動至點P100的坐標是( )

A. (-26,50) B. (-25,50) C. (26,50) D. (25,50)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC,ABC=90°,BEAC于點E,DAC,ADAB,AK平分∠CAB,交線段BE于點F,交邊CB于點K

1)在圖中找出一對全等三角形,并證明;

2)求證:FDBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于0,1以及真分數(shù)p,q,r,若p<q<r,我們稱qpr的中間分數(shù).為了幫助我們找中間分數(shù),制作了下表:

兩個不等的正分數(shù)有無數(shù)多個中間分數(shù).例如:上表中第行中的3個分數(shù)、、,有,所以的一個中間分數(shù),在表中還可以找到的中間分數(shù) , , .把這個表一直寫下去,可以找到更多的中間分數(shù).

(1)按上表的排列規(guī)律,完成下面的填空:

上表中括號內(nèi)應(yīng)填的數(shù)為 ;

如果把上面的表一直寫下去,那么表中第一個出現(xiàn)的的中間分數(shù)是 ;

2)寫出分數(shù)a、b、c、d均為正整數(shù), , )的一個中間分數(shù)(用含ab、c、d的式子表示),并證明;

3)若m、ns、 t均為正整數(shù))都是的中間分數(shù),則的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,C=90°,AC=BC=6cm,點P從點A出發(fā),沿AB方向以每秒cm的速度向終點B運動;同時,動點Q從點B出發(fā)沿BC方向以每秒1cm的速度向終點C運動,將PQC沿BC翻折,點P的對應(yīng)點為點P.設(shè)點Q運動的時間為t秒,若四邊形QPCP為菱形,則t的值為( )

A. B.2 C.2 D.3

查看答案和解析>>

同步練習(xí)冊答案