【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),OD⊥BC于點(diǎn)D,過點(diǎn)C作⊙O的切線,交OD的延長線于點(diǎn)E,連接BE.
(1)求證:BE與⊙O相切;
(2)設(shè)OE交⊙O于點(diǎn)F,若DF=1,BC=2,求陰影部分的面積.
【答案】(1)證明見解析;(2)4﹣π.
【解析】試題分析:(1)連接OC,如圖,利用切線的性質(zhì)得∠OCE=90°,再根據(jù)垂徑定理得到CD=BD,則OD垂中平分BC,所以EC=EB,接著證明△OCE≌△OBE得到∠OBE=∠OCE=90°,然后根據(jù)切線的判定定理得到結(jié)論;
(2)設(shè)⊙O的半徑為r,則OD=r﹣1,利用勾股定理得到(r﹣1)2+()2=r2,解得r=2,再利用三角函數(shù)得到∠BOD=60°,則∠BOC=2∠BOD=120°,接著計(jì)算出BE=OB=2,
然后根據(jù)三角形面積公式和扇形的面積公式,利用陰影部分的面積=2S△OBE﹣S扇形BOC進(jìn)行計(jì)算即可.
試題解析:(1)證明:連接OC,如圖,
∵CE為切線,
∴OC⊥CE,
∴∠OCE=90°,
∵OD⊥BC,
∴CD=BD,
即OD垂中平分BC,
∴EC=EB,
在△OCE和△OBE中
,
∴△OCE≌△OBE,
∴∠OBE=∠OCE=90°,
∴OB⊥BE,
∴BE與⊙O相切;
(2)解:設(shè)⊙O的半徑為r,則OD=r﹣1,
在Rt△OBD中,BD=CD=BC=,
∴(r﹣1)2+()2=r2,解得r=2,
∵tan∠BOD==,
∴∠BOD=60°,
∴∠BOC=2∠BOD=120°,
在Rt△OBE中,BE=OB=2,
∴陰影部分的面積=S四邊形OBEC﹣S扇形BOC
=2S△OBE﹣S扇形BOC
=2××2×2﹣
=4﹣π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列事件發(fā)生的概率,把A,B,C,D填入事件后的括號(hào)里.
A.發(fā)生的概率為0 B.發(fā)生的概率小于
C.發(fā)生的概率大于 D.發(fā)生的概率為1
(1)從一副撲克牌中任意抽取一張,是紅桃;( )
(2)2024年2月有29天;( )
(3)小波能舉起500 kg的大石頭;( )
(4)從5張分別寫有數(shù)字1,2,4,6,8的卡片中任取一張,卡片上數(shù)字恰為偶數(shù).( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】推理填空:如圖:
若,
則______ ______ 內(nèi)錯(cuò)角相等,兩直線平行;
若,
則______ ______ 同旁內(nèi)角互補(bǔ),兩直線平行;
當(dāng)______ ______ 時(shí),
兩直線平行,同旁內(nèi)角互補(bǔ);
當(dāng)______ ______ 時(shí),
兩直線平行,同位角相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個(gè),藍(lán)球1個(gè),黃球若干個(gè),現(xiàn)從中任意摸出一個(gè)球是紅球的概率為
(1)求口袋中黃球的個(gè)數(shù);
(2)甲同學(xué)先隨機(jī)摸出一個(gè)小球(不放回),再隨機(jī)摸出一個(gè)小球,請(qǐng)用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;
(3)現(xiàn)規(guī)定:摸到紅球得5分,摸到黃球得3分,摸到藍(lán)球得2分(每次摸后放回),乙同學(xué)在一次摸球游戲中,第一次隨機(jī)摸到一個(gè)紅球第二次又隨機(jī)摸到一個(gè)藍(lán)球,若隨機(jī)再摸一次,求乙同學(xué)三次摸球所得分?jǐn)?shù)之和不低于10分的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次物理競(jìng)賽中,有一道四選二的雙項(xiàng)選擇題,評(píng)分標(biāo)準(zhǔn)是:多選或只要選錯(cuò)一項(xiàng)就不得分,只選一項(xiàng)且對(duì)得1分,全對(duì)得3分.
(1)小娟在不會(huì)做的情況下,根據(jù)題意決定任選一項(xiàng)作為答案,求她得到1分的概率.
(2)小娜在不會(huì)做的情況下,根據(jù)題意決定任選兩項(xiàng)作答案,用列表法表示小娜答案的所有可能結(jié)果,并求她得到3分的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CN是等邊△的外角內(nèi)部的一條射線,點(diǎn)A關(guān)于CN的對(duì)稱點(diǎn)為D,連接AD,BD,CD,其中AD,BD分別交射線CN于點(diǎn)E,P.
(1)依題意補(bǔ)全圖形;
(2)若,求的大。ㄓ煤的式子表示);
(3)用等式表示線段, 與之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于0,1以及真分?jǐn)?shù)p,q,r,若p<q<r,我們稱q為p和r的中間分?jǐn)?shù).為了幫助我們找中間分?jǐn)?shù),制作了下表:
兩個(gè)不等的正分?jǐn)?shù)有無數(shù)多個(gè)中間分?jǐn)?shù).例如:上表中第③行中的3個(gè)分?jǐn)?shù)、、,有,所以為和的一個(gè)中間分?jǐn)?shù),在表中還可以找到和的中間分?jǐn)?shù), , , .把這個(gè)表一直寫下去,可以找到和更多的中間分?jǐn)?shù).
(1)按上表的排列規(guī)律,完成下面的填空:
①上表中括號(hào)內(nèi)應(yīng)填的數(shù)為 ;
②如果把上面的表一直寫下去,那么表中第一個(gè)出現(xiàn)的和的中間分?jǐn)?shù)是 ;
(2)寫出分?jǐn)?shù)和(a、b、c、d均為正整數(shù), , )的一個(gè)中間分?jǐn)?shù)(用含a、b、c、d的式子表示),并證明;
(3)若與(m、n、s、 t均為正整數(shù))都是和的中間分?jǐn)?shù),則的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,利用一面墻(墻EF最長可利用28米),圍成一個(gè)矩形花園ABCD.與墻平行的一邊BC上要預(yù)留2米寬的入口(如圖中MN所示,不用砌墻).現(xiàn)有砌60米長的墻的材料.
(1)當(dāng)矩形的長BC為多少米時(shí),矩形花園的面積為300平方米;
(2)能否圍成480平方米的矩形花園,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,(1)已知∠ABC,射線ED∥AB,過點(diǎn)E作∠DEF=∠ABC,試說明BC∥EF;
(2)如圖②,已知∠ABC,射線ED∥AB,∠ABC+∠DEF=180°.判斷直線BC與直線EF的位置關(guān)系,并說明理由;
(3)根據(jù)以上探究,你發(fā)現(xiàn)了一個(gè)什么結(jié)論?請(qǐng)你寫出來;
(4)如圖③,已知AC⊥BC,CD⊥AB,DE⊥AC,HF⊥AB,若∠1=48°,試求∠2的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com