【題目】某校為美化校園,計(jì)劃對(duì)面積為1800平方米區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為400平方米區(qū)域綠化時(shí),甲隊(duì)比乙隊(duì)少用4天.求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少平方米?

【答案】解:設(shè)乙工程隊(duì)每天能完成綠化面積是x平方米,則甲工程隊(duì)每天能完成綠化面積是2x平方米, 根據(jù)題意得: =4,
解得:x=50,
經(jīng)檢驗(yàn),x=50是原方程的解,
∴2x=100.
答:甲、乙兩工程隊(duì)每天能完成綠化的面積分別是100平方米、50平方米
【解析】設(shè)乙工程隊(duì)每天能完成綠化面積是x平方米,則甲工程隊(duì)每天能完成綠化面積是2x平方米,根據(jù)時(shí)間=工作總量÷工作效率結(jié)合“在獨(dú)立完成面積為400平方米區(qū)域綠化時(shí),甲隊(duì)比乙隊(duì)少用4天”,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論.
【考點(diǎn)精析】利用分式方程的應(yīng)用對(duì)題目進(jìn)行判斷即可得到答案,需要熟知列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗(yàn)根、寫出答案(要有單位).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】?jī)蓚(gè)角的和為67°56′,差是12°40′,求這兩個(gè)角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為a,點(diǎn)B表示的數(shù)為b,且滿足

寫出a、bAB的距離:

______ ______ ______

若動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒6個(gè)單位長(zhǎng)度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒4個(gè)單位長(zhǎng)度向左勻速運(yùn)動(dòng).

P、Q同時(shí)出發(fā),問點(diǎn)P運(yùn)動(dòng)多少秒追上點(diǎn)Q?

MAP的中點(diǎn),NPB的中點(diǎn),點(diǎn)P在運(yùn)動(dòng)過程中,線段MN是否發(fā)生變化?若變化,請(qǐng)說明理由;若不變,請(qǐng)求出線段MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式2x+1>﹣5的解集是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地新建的一個(gè)企業(yè),每月將生產(chǎn)1960噸污水,為保護(hù)環(huán)境,該企業(yè)計(jì)劃購置污水處理器,并在如下兩個(gè)型號(hào)種選擇:

污水處理器型號(hào)

A型

B型

處理污水能力(噸/月)

240

180

已知商家售出的2臺(tái)A型、3臺(tái)B型污水處理器的總價(jià)為44萬元,售出的1臺(tái)A型、4臺(tái)B型污水處理器的總價(jià)為42萬元.

(1)求每臺(tái)A型、B型污水處理器的價(jià)格;

(2)為確保將每月產(chǎn)生的污水全部處理完,該企業(yè)決定購買上述的污水處理器,那么他們至少要支付多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)(1,-5)所在象限是 ( )

A. 第四象限 B. 第三象限 C. 第二象限 D. 第一象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的圖象經(jīng)過點(diǎn)(2,3),下列說法正確的是(
A.y隨x的增大而增大
B.函數(shù)的圖象只在第一象限
C.當(dāng)x<0時(shí),必有y<0
D.點(diǎn)(﹣2,﹣3)不在此函數(shù)圖象上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD內(nèi)兩點(diǎn)M、N,滿足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四邊形BMDN的面積是菱形ABCD面積的,則cosA= ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y1=與一次函數(shù)y2=k2x+b的圖象交于點(diǎn)A(1,8),B(-4,m)兩點(diǎn).

(1)求k1,k2,b的值;

(2)求△AOB的面積;

(3)請(qǐng)直接寫出不等式x+b的解.

查看答案和解析>>

同步練習(xí)冊(cè)答案