【題目】如圖,在平面直角坐標(biāo)系中,已知點,,,,把一根長為2019個單位長度且沒有彈性的細(xì)線(線的粗細(xì)忽略不計)的一端固定在處,并按的規(guī)律緊繞在四邊形的邊上,則細(xì)線的另一端點所在位置的坐標(biāo)是__________.
【答案】
【解析】
由點A,B,C,D的坐標(biāo)可得出四邊形ABCD為矩形及AB,AD的長,由矩形的周長公式可求出矩形ABCD的周長,結(jié)合2019=202×101可得出細(xì)線的另一端在線段AD上且距A點1個單位長度,結(jié)合點A的坐標(biāo)即可得出結(jié)論.
解:∵A(2,1),B(1,1),C(1,1),D(2,1),
∴AB=3,AD=2,四邊形ABCD為矩形,
∴C矩形ABCD=(3+2)×2=10.
∵2019=202×101,
∴細(xì)線的另一端在線段AD上,且距A點1個單位長度,
∴細(xì)線的另一端所在位置的點的坐標(biāo)是(2,11),即(2,0).
故答案為:(2,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,□ABCD的對角線AC,BD相交于點O,且AE∥BD,BE∥AC,OE=CD.
(1)求證:四邊形 ABCD 是菱形;
(2)若∠ADC=60°,BE=2,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC=3,AC=5,∠B=45°,則下面結(jié)論正確的是_____.
①∠C一定是鈍角;
②△ABC的外接圓半徑為3;
③sinA=;
④△ABC外接圓的外切正六邊形的邊長是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
【答案】(1)b=﹣2a,頂點D的坐標(biāo)為(﹣,﹣);(2);(3) 2≤t<.
【解析】試題分析:(1)把M點坐標(biāo)代入拋物線解析式可得到b與a的關(guān)系,可用a表示出拋物線解析式,化為頂點式可求得其頂點D的坐標(biāo);
(2)把點代入直線解析式可先求得m的值,聯(lián)立直線與拋物線解析式,消去y,可得到關(guān)于x的一元二次方程,可求得另一交點N的坐標(biāo),根據(jù)a<b,判斷a<0,確定D、M、N的位置,畫圖1,根據(jù)面積和可得的面積即可;
(3)先根據(jù)a的值確定拋物線的解析式,畫出圖2,先聯(lián)立方程組可求得當(dāng)GH與拋物線只有一個公共點時,t的值,再確定當(dāng)線段一個端點在拋物線上時,t的值,可得:線段GH與拋物線有兩個不同的公共點時t的取值范圍.
試題解析:(1)∵拋物線有一個公共點M(1,0),
∴a+a+b=0,即b=2a,
∴拋物線頂點D的坐標(biāo)為
(2)∵直線y=2x+m經(jīng)過點M(1,0),
∴0=2×1+m,解得m=2,
∴y=2x2,
則
得
∴(x1)(ax+2a2)=0,
解得x=1或
∴N點坐標(biāo)為
∵a<b,即a<2a,
∴a<0,
如圖1,設(shè)拋物線對稱軸交直線于點E,
∵拋物線對稱軸為
設(shè)△DMN的面積為S,
(3)當(dāng)a=1時,
拋物線的解析式為:
有
解得:
∴G(1,2),
∵點G、H關(guān)于原點對稱,
∴H(1,2),
設(shè)直線GH平移后的解析式為:y=2x+t,
x2x+2=2x+t,
x2x2+t=0,
△=14(t2)=0,
當(dāng)點H平移后落在拋物線上時,坐標(biāo)為(1,0),
把(1,0)代入y=2x+t,
t=2,
∴當(dāng)線段GH與拋物線有兩個不同的公共點,t的取值范圍是
【題型】解答題
【結(jié)束】
26
【題目】搖椅是老年人很好的休閑工具,右圖是一張搖椅放在客廳的側(cè)面示意圖,搖椅靜止時,以O(shè)為圓心OA為半徑的的中點P著地,地面NP與相切,已知∠AOB=60°,半徑OA=60cm,靠背CD與OA的夾角∠ACD=127°,C為OA的中點,CD=80cm,當(dāng)搖椅沿滾動至點A著地時是搖椅向后的最大安全角度.
(1)靜止時靠背CD的最高點D離地面多高?
(2)靜止時著地點P至少離墻壁MN的水平距離是多少時?才能使搖椅向后至最大安全角度時點D不與墻壁MN相碰.
(精確到1cm,參考數(shù)據(jù)π取3.14,sin37°=0.60,cos37°=0.80,tan37°=0.75,sin67°=0.92,cos67°=0.39,tan67°=2.36, =1.41, =1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人站成一橫排照相,因甲、乙兩人是好友,照相時兩人緊鄰著站在一起不分開.
(1)請按左、中、右的順序列出所有符合要求的站位的結(jié)果;
(2)按要求隨機的站立,求丙站在甲左邊的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A,B在反比例函數(shù)(x>0)的圖象上,它們的橫坐標(biāo)分別為m,n,且m≠n,過點A,點B都向x軸,y軸作垂線段,其中兩條垂線段的交點為C.
(1)如圖,當(dāng)m=2,n=6時,直接寫出點C的坐標(biāo):
(2)若A(m,n),B(n,m).連接OA、OB、AB,求△AOB的面積:(用含m的代數(shù)式表示)
(3)設(shè)AD⊥y軸于點D,BE⊥x軸于點E.若,且,則當(dāng)點C在直線DE上時,求p的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,AE和過點C的切線互相垂直,垂足為E,AE交⊙O于點D,直線EC交AB的延長線于點P,連接AC,BC.
(1)求證:AC平分∠BAD;
(2)若AB=6,AC=4,求EC和PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一條長為2016個單位長度且沒有彈性的細(xì)線(線的粗細(xì)忽略不計)的一端固定在點A處,并按A-B-C-D…的規(guī)律繞在ABCD的邊上,則細(xì)線另一端所在位置的點的坐標(biāo)是( )
A. (0,-2) B. (-1,-1) C. (-1,0) D. (1,-2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com