【題目】如圖,在△ABC中,BC=3,AC=5,∠B=45°,則下面結(jié)論正確的是_____.
①∠C一定是鈍角;
②△ABC的外接圓半徑為3;
③sinA=;
④△ABC外接圓的外切正六邊形的邊長是.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點
(1)求證:AC2=ABAD;
(2)求證:CE∥AD;
(3)若AD=4,AB=6,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們不妨約定:對角線互相垂直的凸四邊形叫做“十字形”.
(1)①在平行四邊形,矩形,菱形、正方形中,一定是十字形的有 ;
②若凸四邊形ABCD是十字形,AC=a,BD=b,則該四邊形的面積為 ;
(2)如圖1,以等腰Rt△ABC的底邊AC為邊作等邊三角形△ACD,連接BD,交AC于點O, 當 ≤S 四邊形≤ 時,求BD的取值范圍;
(3)如圖2,以十字形ABCD的對角線AC與BD為坐標軸,建立如圖所示的平面直角坐標系xOy,若計 十字形ABCD的面積為S,記△AOB,△COD,△AOD,△BOC的面積分別為:S1,S2,S3,S4,且同時滿足列四個條件:
① ;② ;③十字形ABCD的周長為32:④∠ABC=60°; 若E為OA的中點,F為線段BO上一動點,連接EF,動點P從點E出發(fā),以1cm/s 的速度沿線段EF勻速運動到點F,再以2cms 的速度沿線段FB勻速運動到點B,到達點B 后停止運動,當點P沿上述路線運動 到點B所需要的時間最短時,求點P走完全程所需的時間及直線EF的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列說法:
①若a+b+c=0,則b2﹣4ac>0;
②若方程兩根為﹣1和2,則2a+c=0;
③若方程ax2+c=0有兩個不相等的實根,則方程ax2+bx+c=0必有兩個不相等的實根;
④若b=2a+c,則方程有兩個不相等的實根.其中正確的有( 。
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點E,F(xiàn)在對角線AC上,且AE=CF.求證:
(1)DE=BF;
(2)四邊形DEBF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為美化學(xué)校環(huán)境,建設(shè)綠色校園,陶治師生情操我校計劃用180元購買A、B兩種花卉苗共20棵,已知A種花卉苗每棵12元,B種花卉苗每棵8元.
(1)根據(jù)題意,甲、乙兩個同學(xué)分別列出了尚不完整的方程組如下:
根據(jù)甲、乙兩名同學(xué)所列的方程組,請你分別指出未知數(shù)x,y表示的意義,然后在方框中補全甲、乙兩名同學(xué)所列的方程組:
甲:x表示 ,y表示 ;
乙:x表示 ,y表示 ;
(2)求A、B兩種花卉各多少棵?(寫出完整的解答過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點,,,,把一根長為2019個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在處,并按的規(guī)律緊繞在四邊形的邊上,則細線的另一端點所在位置的坐標是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖點A(a,0)在x軸負半軸,點B(b,0)在x軸正半軸,點C(0,c)在y軸正半軸,且.
(1)如圖1,求S△ABC;
(2)如圖2,若點D(0,5),BD的延長線交AC于E,求∠AEB;
(3)如圖3,在(2)的條件下,將線段BA繞點B逆時針旋轉(zhuǎn)90°至線段BF,連接EF,試探究EA,EB,EF之間有怎樣的數(shù)量關(guān)系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com