提出問(wèn)題:如圖①,在四邊形ABCD中,點(diǎn)E、F是AD的n等分點(diǎn)中最中間2個(gè),點(diǎn)G、H是BC的n等分點(diǎn)中最中間2個(gè),(其中n為奇數(shù)),連接EG、FH,那么S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢?
                                         
探究發(fā)現(xiàn):為了解決這個(gè)問(wèn)題,我們可以先從一些簡(jiǎn)單的、特殊的情形入手:
(1)如圖②:四邊形ABCD中,點(diǎn)E、F是AD的3等分點(diǎn),點(diǎn)G、H是BC的3等分點(diǎn),連接EG、FH,那么S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢?
如圖③,連接EH、BE、DH,

因?yàn)椤鱁GH與△EBH高相等,底的比是1:2,
所以SEGH=SEBH
因?yàn)椤鱁FH與△DEH高相等,底的比是1:2,
所以SEFH=SDEH
所以SEGH+SEFH=SEBH +SDEH
即S四邊形EFHG=S四邊形EBHD
連接BD,
因?yàn)椤鱀BE與△ABD高相等,底的比是2:3,
所以SDBE=SABD
因?yàn)椤鰾DH與△BCD高相等,底的比是2:3,
所以SBDH=SBCD
所以SDBE +SBDH=SABD+SBCD =(SABD+SBCD)
=S四邊形ABCD
即S四邊形EBHD=S四邊形ABCD
所以S四邊形EFHG=S四邊形EBHD=×S四邊形ABCD=S四邊形ABCD
(1)如圖④:四邊形ABCD中,點(diǎn)E、F是AD的5等分點(diǎn)中最中間2個(gè),點(diǎn)G、H是BC的5等分點(diǎn)中最中間2個(gè),連接EG、FH,猜想:S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢                       
驗(yàn)證你的猜想:

(2)問(wèn)題解決:如圖①,在四邊形ABCD中,點(diǎn)E、F是AD的n等分點(diǎn)中最中間2個(gè),點(diǎn)G、H是BC的n等分點(diǎn)中最中間2個(gè),連接EG、FH,(其中n為奇數(shù))
那么S四邊形EFHG與S四邊形ABCD之間的關(guān)系為:                            (不必寫(xiě)出求解過(guò)程)

(1)S四邊形EFHG=S四邊形ABCD,證明見(jiàn)解析;
(2)S四邊形EFHG=S四邊形ABCD

解析試題分析:仿照上面的探究思路,類(lèi)比求解.
試題解析:(1)四邊形ABCD中,點(diǎn)E、F是AD的5等分點(diǎn)中最中間2個(gè),點(diǎn)G、H是BC的5等分點(diǎn)中最中間2個(gè),連接EG、FH,S四邊形EFHG=S四邊形ABCD,
如圖④:連接EH、BE、DH,

因?yàn)椤鱁GH與△EBH高相等,底的比是1:3,
所以SEGH=SEBH
因?yàn)椤鱁FH與△DEH高相等,底的比是1:3,
所以SEFH=SDEH
所以SEGH+SEFH=SEBH +SDEH
即S四邊形EFHG=S四邊形EBHD
連接BD,
因?yàn)椤鱀BE與△ABD高相等,底的比是3:5,
所以SDBE=SABD
因?yàn)椤鰾DH與△BCD高相等,底的比是3:5,
所以SBDH=SBCD
所以SDBE +SBDH=SABD+SBCD = (SABD+SBCD)
=S四邊形ABCD
即S四邊形EBHD=S四邊形ABCD
所以S四邊形EFHG=S四邊形EBHD=×S四邊形ABCD=S四邊形ABCD
(2)在四邊形ABCD中,點(diǎn)E、F是AD的n等分點(diǎn)中最中間2個(gè),點(diǎn)G、H是BC的n等分點(diǎn)中最中間2個(gè),連接EG、FH,(其中n為奇數(shù))那么S四邊形EFHG=S四邊形ABCD
考點(diǎn):三角形的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在□ABCD中,AE、BF分別平分∠DAB和∠ABC,交CD于點(diǎn)E、F,AE、BF相交于點(diǎn)M.
(1)試說(shuō)明:AE⊥BF;
(2)判斷線段DF與CE的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:Rt△OAB在直角坐標(biāo)系中的位置如圖所示,P(3,4)為OB的中點(diǎn),點(diǎn)C為折線OAB上的動(dòng)點(diǎn),線段PC把Rt△OAB分割成兩部分. 問(wèn):點(diǎn)C在什么位置時(shí),分割得到的三角形與Rt△OAB相似?(注:在圖上畫(huà)出所有符合要求的線段PC,并寫(xiě)出相應(yīng)的點(diǎn)C的坐標(biāo)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,△ABC與△A′B′C′是位似圖形,且頂點(diǎn)都在格點(diǎn)上,每個(gè)小正方形的邊長(zhǎng)都為1.

(1)在圖上標(biāo)出位似中心D的位置,并寫(xiě)出該位似中心D的坐標(biāo)是               ;
(2)求△ABC與△A′B′C′的面積比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,若以原點(diǎn)為位似中心,將五邊形AEDCB放大,使放大后的五邊形的邊長(zhǎng)是原五邊形對(duì)應(yīng)邊長(zhǎng)的3倍,請(qǐng)?jiān)谙聢D網(wǎng)格中畫(huà)出放大后的五邊形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知.如圖,點(diǎn)D、E分別是在AB,AC上,.求證:DE∥BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

為了測(cè)量校園水平地面上一棵樹(shù)的高度,數(shù)學(xué)興趣小組利用一根標(biāo)桿、皮尺,設(shè)計(jì)如圖所示的測(cè)量方案.已知測(cè)量同學(xué)眼睛A、標(biāo)桿頂端F、樹(shù)的頂端E在同一直線上,此同學(xué)眼睛距地面1.6米,標(biāo)桿為3.1米,且BC=1米,CD=5米,請(qǐng)你根據(jù)所給出的數(shù)據(jù)求樹(shù)高ED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,□ABCD中,E為BC延長(zhǎng)線上一點(diǎn),AE交CD于點(diǎn)F,若,AD=2,∠B=45°,,求CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平行四邊形ABCD中,過(guò)點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B.

(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案