在□ABCD中,AE、BF分別平分∠DAB和∠ABC,交CD于點E、F,AE、BF相交于點M.
(1)試說明:AE⊥BF;
(2)判斷線段DF與CE的大小關(guān)系,并說明理由.
(1)證明見解析;(2)DF=CE.理由見解析.
解析試題分析:(1)因為AE,BF分別是∠DAB,∠ABC的角平分線,那么就有∠MAB=∠DAB,∠MBA=∠ABC,而∠DAB與∠ABC是同旁內(nèi)角互補,所以,能得到∠MAB+∠MBA=90°,即得證.
(2)兩條線段相等.利用平行四邊形的對邊平行,以及角平分線的性質(zhì),可以得到△ADE和△BCF都是等腰三角形,那么就有CF=BC=AD=DE,再利用等量減等量差相等,可證.
(1)∵在?ABCD中,AD∥BC,
∴∠DAB+∠ABC=180°.(1分)
∵AE、BF分別平分∠DAB和∠ABC,
∴∠DAB=2∠BAE,∠ABC=2∠ABF.
∴2∠BAE+2∠ABF=180°.
即∠BAE+∠ABF=90°.
∴∠AMB=90°.
∴AE⊥BF.
(2)線段DF與CE是相等關(guān)系,即DF=CE,
∵在?ABCD中,CD∥AB,
∴∠DEA=∠EAB.
又∵AE平分∠DAB,
∴∠DAE=∠EAB.
∴∠DEA=∠DAE.
∴DE=AD.(6分)
同理可得,CF=BC.
又∵在?ABCD中,AD=BC,
∴DE=CF.
∴DE-EF=CF-EF.
即DF=CE.
考點:1.相似三角形的判定與性質(zhì);2.角平分線的性質(zhì);3.平行四邊形的性質(zhì).
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在?ABCD中,E,F(xiàn)分別為BC,AB中點,連接FC,AE,且AE與FC交于點G,AE的延長線與DC的延長線交于點N.
(1)求證:△ABE≌△NCE;
(2)若AB=3n,F(xiàn)B=GE,試用含n的式子表示線段AN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,△ABC中,AB=AC,作以AB為直徑的⊙O與邊BC交于點D,過點D作⊙O的切線,分別交AC、AB的延長線于點E、F.
(1)求證:EF⊥AC;
(2)若BF=2,CE=1.2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個三角形為“好玩三角形”.
(1)請用直尺和圓規(guī)畫一個“好玩三角形”;
(2)如圖1,在Rt△ABC中,∠C=90°,tanA= ,求證:△ABC是“好玩三角形”;
(3)如圖2,已知菱形ABCD的邊長為a,∠ABC=2β,點P,Q從點A同時出發(fā),以相同速度分別沿折線AB﹣BC和AD﹣DC向終點C運動,記點P經(jīng)過的路程為s.
①當β=45°時,若△APQ是“好玩三角形”,試求的值;
②當tanβ的取值在什么范圍內(nèi),點P,Q在運動過程中,有且只有一個△APQ能成為“好玩三角形”.請直接寫出tanβ的取值范圍.
(4)依據(jù)(3)的條件,提出一個關(guān)于“在點P,Q的運動過程中,tanβ的取值范圍與△APQ是‘好玩三角形’的個數(shù)關(guān)系”的真命題(“好玩三角形”的個數(shù)限定不能為1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,△ABC是一張銳角三角形的硬紙片,AD是邊BC上的高,BC=40 cm,AD=30 cm,從這張硬紙片上剪下一個長HG是寬HE的2倍的矩形EFGH,使它的一邊EF在BC上,頂點G、H分別在AC、AB上,AD與HG的交點為M. 求矩形的長與寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知矩形OABC的頂點O(0,0)、A(4,0)、B(4,-3).動點P從O出發(fā),以每秒1個單位的速度,沿射線OB方向運動.設(shè)運動時間為t秒.
(1)求P點的坐標(用含t的代數(shù)式表示);
(2)如圖,以P為一頂點的正方形PQMN的邊長為2,且邊PQ⊥y軸.設(shè)正方形PQMN與矩形OABC的公共部分面積為S,當正方形PQMN與矩形OABC無公共部分時,運動停止.
①當t<4時,求S與t之間的函數(shù)關(guān)系式;
②當t>4時,設(shè)直線MQ、MN分別交矩形OABC的邊BC、AB于D、E,問:是否存在這樣的t,使得△PDE為直角三角形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
提出問題:如圖①,在四邊形ABCD中,點E、F是AD的n等分點中最中間2個,點G、H是BC的n等分點中最中間2個,(其中n為奇數(shù)),連接EG、FH,那么S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢?
探究發(fā)現(xiàn):為了解決這個問題,我們可以先從一些簡單的、特殊的情形入手:
(1)如圖②:四邊形ABCD中,點E、F是AD的3等分點,點G、H是BC的3等分點,連接EG、FH,那么S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢?
如圖③,連接EH、BE、DH,
因為△EGH與△EBH高相等,底的比是1:2,
所以S△EGH=S△EBH
因為△EFH與△DEH高相等,底的比是1:2,
所以S△EFH=S△DEH
所以S△EGH+S△EFH=S△EBH +S△DEH
即S四邊形EFHG=S四邊形EBHD
連接BD,
因為△DBE與△ABD高相等,底的比是2:3,
所以S△DBE=S△ABD
因為△BDH與△BCD高相等,底的比是2:3,
所以S△BDH=S△BCD
所以S△DBE +S△BDH=S△ABD+S△BCD =(S△ABD+S△BCD)
=S四邊形ABCD
即S四邊形EBHD=S四邊形ABCD
所以S四邊形EFHG=S四邊形EBHD=×S四邊形ABCD=S四邊形ABCD
(1)如圖④:四邊形ABCD中,點E、F是AD的5等分點中最中間2個,點G、H是BC的5等分點中最中間2個,連接EG、FH,猜想:S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢
驗證你的猜想:
(2)問題解決:如圖①,在四邊形ABCD中,點E、F是AD的n等分點中最中間2個,點G、H是BC的n等分點中最中間2個,連接EG、FH,(其中n為奇數(shù))
那么S四邊形EFHG與S四邊形ABCD之間的關(guān)系為: (不必寫出求解過程)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com