【題目】以坐標原點O為圓心,作半徑為2的圓,若直線y=﹣x+b與⊙O相交,則b的取值范圍是( )
A.0≤b<2
B.﹣2
C.﹣2 2
D.﹣2 <b<2

【答案】D
【解析】解:當直線y=﹣x+b與圓相切,且函數(shù)經(jīng)過一、二、四象限時,如圖.

在y=﹣x+b中,令x=0時,y=b,則與y軸的交點是(0,b),
當y=0時,x=b,則A的交點是(b,0),
則OA=OB,即△OAB是等腰直角三角形.
連接圓心O和切點C.則OC=2.
則OB= OC=2 .即b=2 ;
同理,當直線y=﹣x+b與圓相切,且函數(shù)經(jīng)過二、三、四象限時,b=﹣2
則若直線y=﹣x+b與⊙O相交,則b的取值范圍是﹣2 <b<2
所以答案是:D.
【考點精析】通過靈活運用直線與圓的三種位置關系和切線的性質(zhì)定理,掌握直線與圓有三種位置關系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點;切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=40°,∠C=110°.按要求完成下列各題.

1)畫出△ABC的高AD;

2)畫出△ABC的角平分線AE;

3)根據(jù)你所畫的圖形求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場購進一種每件價格為6元的新商品,在商場試銷發(fā)現(xiàn):銷售單價(元/件)與每天銷售量(件)之間滿足如圖所示的關系:

1)求出之間的函數(shù)關系式.

2)若你是商場負責人,要使每天的利潤達到35元,應將售價定為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖形的操作過程:
在圖①中,將線段A1A2向右平移1個單位到B1B2 , 得到封閉圖形A1A2B2B1(即陰影部分);
在圖②中,將折線A1A2A3向右平移1個單位到B1B2B3 , 得到封閉圖形A1A2A3B3B2B1(即陰影部分).

(1)在圖③中,請你類似地畫一條有兩個折點的折線,同樣向右平移1個單位,從而得到一個封閉圖形,并用斜線畫出陰影;

(2)請你分別寫出上述三個圖形中除去陰影部分后剩余部分的面積:
S1= , S2= , S3=
(3)聯(lián)想與探索:
如圖④在一塊矩形草地上,有一條彎曲的柏油小路(小路任何地方的水平寬度都是1個單位),請你猜想空白部分表示的草地面積是多少并說明你的猜想是正確的.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.點D在AC上,AD=1cm,點P從點A出發(fā),沿AB勻速運動;點Q從點C出發(fā),沿C→B→A→C的路徑勻速運動.兩點同時出發(fā),在B點處首次相遇后,點P的運動速度每秒提高了2cm,并沿B→C→A的路徑勻速運動;點Q保持速度不變,并繼續(xù)沿原路徑勻速運動,兩點在D點處再次相遇后停止運動,設點P原來的速度為xcm/s.

(1)點Q的速度為cm/s(用含x的代數(shù)式表示).
(2)求點P原來的速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y1kx+by2=﹣4x+a的圖象如圖所示,且A0,4),C(﹣2,0).

1)由圖可知,不等式kx+b0的解集是   ;

2)若不等式kx+b>﹣4x+a的解集是x1

①求點B的坐標;

②求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】朗讀者自開播以來,以其厚重的文化底蘊和感人的人文情懷,感動了數(shù)以億計的觀眾,岳池縣某中學開展朗讀比賽活動,九年級、班根據(jù)初賽成績,各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績滿分為100如圖所示.

平均數(shù)

中位數(shù)

眾數(shù)

85

85

80

根據(jù)圖示填寫表格;

結(jié)合兩班復賽成績的平均數(shù)和中位數(shù),分析哪個班級的復賽成績較好;

如果規(guī)定成績較穩(wěn)定班級勝出,你認為哪個班級能勝出?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知矩形AOCB的頂點O、A的坐標分別是(00)、(0a),且滿足 DAB上一點, M,N垂直平分OD,分別交AB,ODOC于點M,EN,連接OM,DN

1)填空:a = ;

2)求證:四邊形MOND是菱形;

3)若FOA的中點,連接EF,且滿足EF+OE=9,求四邊形MOND的周長和面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市在招商引資期間,把已經(jīng)破產(chǎn)的油泵廠出租給外地某投資商,該投資商為了減少固定資產(chǎn)投資,將原來400平方米的正方形場地建成300平方米的長方形場地,并且長、寬的比為5:3,并且把原來的正方形鐵柵欄圍墻全部利用,圍成新場地的長方形圍墻,請問這些鐵柵欄是否夠用?

查看答案和解析>>

同步練習冊答案