【題目】如圖,在平面直角坐標系中,的頂點坐標分別為A(2,3)、B (1,1)、C(2,1)
(1)畫出關于軸對稱的,并寫出點的坐標為_________
(2)將向左平移4個單位長度得到,直接寫出點的坐標為_________
(3)直接寫出點B關于直線n(直線n上各點的縱坐標都為-1)對稱點B'的坐標為________
(4)在軸上找一點P,使PA+PB的值最小,標出P點的位置(保留畫圖痕跡)
【答案】(1),(2)C2;(3)B`(1,-3);(4)詳見解析.
【解析】
(1)根據(jù)軸對稱的定義作出點A,B,C關于x軸的對稱點,再順次連接即可得;
(2)根據(jù)平移變換的定義作出點A,B,C向左平移4個單位得到的對應點,再順次連接可得;
(3)先得出直線n的解析式,再作出點B關于直線n:y=-1的對稱點,據(jù)此可得;
(4)連接A2B與y軸交點就是P點.
(1)如圖所示,△A1B1C1即為所求,點A1的坐標為(2,-3),
故答案為:(2,-3).
(2)如圖所示,△A2B2C2即為所求,點C2的坐標為(-2,1),
故答案為:(-2,1).
(3)由題意知直線n的解析式為y=-1,
則點B關于直線n的對稱點B′的坐標為(1,-3),
故答案為:(1,-3).
(4)如圖所示,點P即為所求.
科目:初中數(shù)學 來源: 題型:
【題目】(2016廣西賀州市)如圖,將線段AB繞點O順時針旋轉90°得到線段A′B′,那么A(﹣2,5)的對應點A′的坐標是( )
A. (2,5) B. (5,2) C. (2,﹣5) D. (5,﹣2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某興趣小組借助無人飛機航拍校園.如圖,無人飛機從A處水平飛行至B處需8秒,在地面C處同一方向上分別測得A處的仰角為75°,B處的仰角為30°.已知無人飛機的飛行速度為4米/秒,求這架無人飛機的飛行高度.(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,A(5, 0), B(0, 5), C(2, 0),連AB
(1)如圖2,D為第一象限內(nèi)一點,CDBC于點C,ADAB于點A,求點D坐標;
(2)E為軸負半軸上一動點,連BE,在軸下方做EFBE于點E,并且EF=BE,連FC,直接寫出當CF最短時點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,DM、EN分別垂直平分AC和BC,交AB于M、N兩點,DM與EN相交于點F.
(1)若△CMN的周長為15cm,求AB的長;
(2)若∠MFN=70°,求∠MCN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)觀察推理:如圖1,△ABC中,∠ACB=90°,AC=BC,直線l過點C,點A,B在直線l同側,BD⊥l,AE⊥l,垂足分別為D,E.求證:△AEC≌△CDB;
(2)類比探究:如圖2,Rt△ABC中,∠ACB=90°,AC=2,將斜邊AB繞點A逆時針旋轉90°至AB',連接B′C,求△AB′C的面積.
(3)拓展提升:如圖3,等邊△EBC中,EC=BC=3cm,點O在BC上且OC=2cm,動點P從點E沿射線EC以lcm/s速度運動,連接OP,將線段OP繞點O逆時針旋轉120°得到線段OF,設點P運動的時間為t秒.
①當t=______秒時,OF∥ED.
②當t=______秒時,點F恰好落在射線EB上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(題文)停車難已成為合肥城市病之一,主要表現(xiàn)在居住停車位不足,停車資源結構性失衡,中心城區(qū)供需差距大等等.如圖是張老師的車與墻平行停放的平面示意圖,汽車靠墻一側OB與墻MN平行且距離為0.8米,已知小汽車車門寬AO為 1.2 米,當車門打開角度∠AOB為40°時,車門是否會碰到墻?請說明理由.(參考數(shù)據(jù):sin 40°≈0.64,cos 40°≈0.77,tan 40°≈0.84)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是BC上的一點,且AE=AD,又DF⊥AE于點F
(1)求證:CE=EF;
(2)若EF=2,CD=4,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知長方形ABCD中,∠A=∠D=∠B=∠C=90,E是AD上的一點,F是AB上的一點,EF⊥EC,且EF=EC,DE=4cm.
(1)求證:AF=DE.
(2)若AD+DC=18,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com