【題目】自從湖南與歐洲的“湘歐快線”開(kāi)通后,我省與歐洲各國(guó)經(jīng)貿(mào)往來(lái)日益頻繁,某歐洲客商準(zhǔn)備在湖南采購(gòu)一批特色商品,經(jīng)調(diào)查,用16 000元采購(gòu)A型商品的件數(shù)是用7 500元采購(gòu)B型商品的件數(shù)的2倍,一件A型商品的進(jìn)價(jià)比一件B型商品的進(jìn)價(jià)多10元.
(1)求一件A,B型商品的進(jìn)價(jià)分別為多少元?
(2)若該歐洲客商購(gòu)進(jìn)A,B型商品共250件進(jìn)行試銷,其中A型商品的件數(shù)不大于B型的件數(shù),且不小于80件,已知A型商品的售價(jià)為240元/件,B型商品的售價(jià)為220元/件,且全部售出.設(shè)購(gòu)進(jìn)A型商品m件,求該客商銷售這批商品的利潤(rùn)v與m之間的函數(shù)解析式,并寫出m的取值范圍;
(3)在(2)的條件下,歐洲客商決定在試銷活動(dòng)中每售出一件A型商品,就從一件A型商品的利潤(rùn)中捐獻(xiàn)慈善資金a元,求該客商售完所有商品并捐獻(xiàn)慈善資金后獲得的最大收益.
【答案】(1)一件B型商品的進(jìn)價(jià)為150元,一件A型商品的進(jìn)價(jià)為160元;(2)80≤m≤125;(3)m=80時(shí),最大利潤(rùn)為(18 300-80a)元.
【解析】試題(1)設(shè)一件B型商品的進(jìn)價(jià)為x元,則一件A型商品的進(jìn)價(jià)為(x+10)元.根據(jù)16000元采購(gòu)A型商品的件數(shù)是用7500元采購(gòu)B型商品的件數(shù)的2倍,列出方程即可解決問(wèn)題;
(2)根據(jù)總利潤(rùn)=兩種商品的利潤(rùn)之和,列出式子即可解決問(wèn)題;
(3)設(shè)利潤(rùn)為w元.則w=(80﹣a)m+70(250﹣m)=(10﹣a)m+17500,分三種情形討論即可解決問(wèn)題.
試題解析:解:(1)設(shè)一件B型商品的進(jìn)價(jià)為x元,則一件A型商品的進(jìn)價(jià)為(x+10)元.
由題意:,解得x=150,經(jīng)檢驗(yàn)x=150是分式方程的解.
答:一件B型商品的進(jìn)價(jià)為150元,一件A型商品的進(jìn)價(jià)為160元.
(2)因?yàn)榭蜕藤?gòu)進(jìn)A型商品m件,所以客商購(gòu)進(jìn)B型商品(250﹣m)件.
由題意:v=80m+70(250﹣m)=10m+17500,∵80≤m≤250﹣m,∴80≤m≤125,∴v=10m+17500(80≤m≤125);
(3)設(shè)利潤(rùn)為w元.則w=(80﹣a)m+70(250﹣m)=(10﹣a)m+17500:
①當(dāng)10﹣a>0時(shí),w隨m的增大而增大,所以m=125時(shí),最大利潤(rùn)為(18750﹣125a)元.
②當(dāng)10﹣a=0時(shí),最大利潤(rùn)為17500元.
③當(dāng)10﹣a<0時(shí),w隨m的增大而減小,所以m=80時(shí),最大利潤(rùn)為(18300﹣80a)元,∴當(dāng)a<10時(shí),最大利潤(rùn)為(18750﹣125a)元;當(dāng)a=10時(shí),最大利潤(rùn)為17500元;當(dāng)a>10時(shí),最大利潤(rùn)為(18300﹣80a)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=(x>0,k>0)的圖象經(jīng)過(guò)點(diǎn)A(1,a),B(m,n)(m>0),分別過(guò)A、B兩點(diǎn)作y軸垂線,垂足分別為D,C,且CD=.
(1)求k關(guān)于n的關(guān)系式;
(2)當(dāng)△ABC面積為2時(shí),求反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】石獅泰禾某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進(jìn)價(jià)為80元,銷售價(jià)為120元時(shí),每天可售出20件,為了迎接“十一”國(guó)慶節(jié),商店決定采取適當(dāng)?shù)慕祪r(jià)措施,以擴(kuò)大銷售量,增加利潤(rùn),經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),如果每件童裝降價(jià)1元,那么平均可多售出2件.
(1)設(shè)每件童裝降價(jià)x元時(shí),每天可銷售______ 件,每件盈利______ 元;(用x的代數(shù)式表示)
(2)每件童裝降價(jià)多少元時(shí),平均每天贏利1200元.
(3)要想平均每天贏利2000元,可能嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),已知正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,E是AC上一點(diǎn),連接EB,過(guò)點(diǎn)A作AM⊥BE,垂足為M,AM交BD于點(diǎn)F.
(1)求證:OE=OF;
(2)如圖(2),若點(diǎn)E在AC的延長(zhǎng)線上,AM⊥BE于點(diǎn)M,交DB的延長(zhǎng)線于點(diǎn)F,其他條件不變,則結(jié)論“OE=OF”還成立嗎?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣3x+3與x軸、y軸分別交于A、B兩點(diǎn),以AB為邊在第一象限作正方形ABCD,點(diǎn)D在雙曲線(k≠0)上.將正方形沿x軸負(fù)方向平移a個(gè)單位長(zhǎng)度后,點(diǎn)C恰好落在該雙曲線上,則a的值是
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了豐富少年兒童的業(yè)余生活,某社區(qū)要在如圖所示AB所在的直線建一圖書室,本社區(qū)有兩所學(xué)校所在的位置在點(diǎn)C和點(diǎn)D處,CA⊥AB于A,DB⊥AB于B,已知AB=25km,CA=15km,DB=10km,試問(wèn):圖書室E應(yīng)該建在距點(diǎn)A多少km處,才能使它到兩所學(xué)校的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OM=2,MN=6,A為射線ON上的動(dòng)點(diǎn),以OA為一邊作內(nèi)角∠OAB=120°的菱形OABC,則BM+BN的最小值為 ( )
A. B. 6 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCO的邊OA、OC在坐標(biāo)軸上,點(diǎn)B坐標(biāo)為(6,6),將正方形ABCO繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點(diǎn)G,ED的延長(zhǎng)線交線段OA于點(diǎn)H,連CH、CG.
(1)求證:△CBG≌△CDG;
(2)求∠HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關(guān)系,說(shuō)明理由;
(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過(guò)程中,四邊形AEBD能否為矩形?如果能,請(qǐng)求出點(diǎn)H的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,C、D兩點(diǎn)在半圓上,CE⊥AB于E,DF⊥AB于F,點(diǎn)P是AB上的一個(gè)動(dòng)點(diǎn),已知AB=10,CE=4,DF=3,則PC+PD的最小值是( 。
A. 7 B. 7 C. 10 D. 8
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com