【題目】已知二次函數(shù)y=x2+bx+c.
(Ⅰ)若二次函數(shù)的圖象經(jīng)過(3,﹣2),且對(duì)稱軸為x=1,求二次函數(shù)的解析式;
(Ⅱ)如圖,在(Ⅰ)的條件下,過定點(diǎn)的直線y=﹣kx+k﹣4(k≤0)與(1)中的拋物線交于點(diǎn)M,N,且拋物線的頂點(diǎn)為P,若△PMN的面積等于3,求k的值;
(Ⅲ)當(dāng)c=b2時(shí),若在自變量x的值滿足b≤x≤b+3的情況下,與其對(duì)應(yīng)的函數(shù)值y的最小值為21,求此時(shí)二次函數(shù)的解析式.
【答案】(Ⅰ)y=x2﹣2x﹣5;(Ⅱ)k=2;(Ⅲ)y=x2﹣4x+16或y=x2+x+7.
【解析】
(Ⅰ)根據(jù)題意得,,解得:,即可求解;
(Ⅱ)△PMN的面積S=S△PGN﹣S△PGM=GP(xN﹣xM)=xN﹣xM==3,即可求解;
(Ⅲ)分b+3≤﹣(即b≤﹣2)、b≥﹣(即b≥0)、﹣2<b<0三種情況,分別求解即可.
(Ⅰ)根據(jù)題意得,,
解得:,
∴二次函數(shù)的解析式為y=x2﹣2x﹣5…①;
(Ⅱ)如圖1,
∵y=﹣kx+k﹣4=﹣k(x﹣1)﹣4…②,
聯(lián)立①②并整理得:x2﹣(2﹣k)x﹣k﹣1=0,
則xM+xN=2﹣k,xMxN=﹣k﹣1,
xN﹣xM==;
∴當(dāng)x=1時(shí),y=﹣4,即該直線所過定點(diǎn)G坐標(biāo)為(1,﹣4),
∵y=x2﹣2x﹣5=(x﹣1)2﹣6,
∴點(diǎn)P(1,﹣6),
△PMN的面積S=S△PGN﹣S△PGM=GP(xN﹣xM)=xN﹣xM==3,
解得:k=±2(舍去2),故k=﹣2;
(Ⅲ)拋物線的表達(dá)式為:y=x2+bx+b2,
拋物線的對(duì)稱軸為x=﹣;
①當(dāng)b+3≤﹣(即b≤﹣2)時(shí),
則x=b+3時(shí),函數(shù)取得最小值,
即(b+3)2+b(b+3)+b2=21,
解得:b=﹣4或1(舍去1);
②當(dāng)b≥﹣(即b≥0)時(shí),
則x=b時(shí),函數(shù)取得最小值,
即b2+b2+b2=21,解得:b=(舍去負(fù)值);
③當(dāng)﹣2<b<0時(shí),
則﹣b2+b2=21,解得:b=±2(舍去);
綜上,b=﹣4或,
故拋物線的表達(dá)式為:y=x2﹣4x+16或y=x2+x+7.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程(a﹣1)x2+2x+a+1=0.
(1)若該方程有一根為0,求a的值及方程的另一根;
(2)當(dāng)a為何值時(shí),方程僅有一個(gè)實(shí)數(shù)根?求出此時(shí)a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)實(shí)施產(chǎn)業(yè)扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價(jià)為8元/千克,投入市場(chǎng)銷售時(shí),調(diào)查市場(chǎng)行情,發(fā)現(xiàn)該蜜柚銷售不會(huì)虧本,且每天銷售量(千克)與銷售單價(jià)(元/千克)之間的函數(shù)關(guān)系如圖所示.
(1)求與的函數(shù)關(guān)系式,并寫出的取值范圍;
(2)當(dāng)該品種蜜柚定價(jià)為多少時(shí),每天銷售獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
(3)某農(nóng)戶今年共采摘蜜柚4800千克,該品種蜜柚的保質(zhì)期為40天,根據(jù)(2)中獲得最大利潤(rùn)的方式進(jìn)行銷售,能否銷售完這批蜜柚?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一副撲克牌中取出6張撲克牌,分別是黑桃2、4、6,紅心6、7、8.將撲克牌背面朝上分別放在甲、乙兩張桌面上,先從甲桌面上任意摸出一張黑桃,再?gòu)囊易烂嫔先我饷鲆粡埣t心.
(1)表示出所有可能出現(xiàn)的結(jié)果;
(2)小黃和小石做游戲,制定了兩個(gè)游戲規(guī)則:
規(guī)則1:若兩次摸出的撲克牌中,至少有一張是“6”,小黃贏;否則,小石贏.
規(guī)則2:若摸出的紅心牌點(diǎn)數(shù)是黑桃牌點(diǎn)數(shù)的整數(shù)倍時(shí),小黃贏;否則,小石贏.
小黃想要在游戲中獲勝,會(huì)選擇哪一條規(guī)則,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A(0,﹣2),拋物線y=﹣2x+2的頂點(diǎn)為P,AP+OP的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,E是AB延長(zhǎng)線上一點(diǎn),F是DC延長(zhǎng)線上一點(diǎn),且滿足BF=EF,將線段EF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°得FG,過點(diǎn)B作FG的平行線,交DA的延長(zhǎng)線于點(diǎn)N,連接NG.
求證:BE=2CF;
試猜想四邊形BFGN是什么特殊的四邊形,并對(duì)你的猜想加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(知識(shí)回顧)我們學(xué)習(xí)完《直角三角形的邊角關(guān)系》之后知道,在中,當(dāng)銳角確定時(shí),銳角的三角函數(shù)值也隨之確定.結(jié)合課本所學(xué)知識(shí),請(qǐng)你填空:______;______;______.
(深入探究)定義:在中,,我們把的對(duì)邊與的對(duì)邊的比叫做的鄰弦,記作,即:.請(qǐng)解答下列問題:已知:在中,.
(1)如圖①,若,求的值;
(2)如圖②,若,求的度數(shù);
(3)若是銳角,請(qǐng)你直接寫出與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過點(diǎn)A(4,1)的直線與反比例函數(shù)y=的圖象交于點(diǎn)A、C,AB⊥y軸,垂足為B,連接BC.
(1)求反比例函數(shù)的表達(dá)式;
(2)若△ABC的面積為6,求直線AC的函數(shù)表達(dá)式;
(3)在(2)的條件下,點(diǎn)P在雙曲線位于第一象限的圖象上,若∠PAC=90°,則點(diǎn)P的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明同學(xué)在東西方向的環(huán)海路A處,測(cè)得海中燈塔P在它的北偏東60°方向上,在A的正東200米的B處,測(cè)得海中燈塔P在它的北偏東30°方向上.問:燈塔P到環(huán)海路的距離PC約等于多少米?(取1.732,結(jié)果精確到1米)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com