【題目】在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,點A(0,﹣2),拋物線y2x+2的頂點為PAP+OP的最小值為______.

【答案】2

【解析】

利用配方法得到P(m,2m),則可判斷點P在直線y=﹣x+2上,作出點O(00)關(guān)于直線y=﹣x+2的對稱點O′,則O′的坐標(biāo)為(2,2),連接O′A交直線y=﹣x+2P,如圖,利用兩點之間線段最短可判斷此時PA+PO的值最小,然后計算出O′A即可.

∵拋物線y2x+2(xm)2+2m

P(m,2m)

∴點P在直線y=﹣x+2上,

O(00)關(guān)于直線y=﹣x+2的對稱點O′的坐標(biāo)為(2,2),

連接O′A交直線y=﹣x+2P,如圖,

PA+POPA+PO′O′A,此時PA+PO的值最小,

∵點A(0,﹣2),

O′A2

AP+OP的最小值為2.

故答案為2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過兩點A(﹣3,0),B0,3),且其對稱軸為直線x=﹣1

1)求此拋物線的解析式.

2)若點Q是對稱軸上一動點,當(dāng)OQ+BQ最小時,求點Q的坐標(biāo).

3)若點P是拋物線上點A與點B之間的動點(不包括點A,點B),求PAB面積的最大值,并求出此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在東西方向的海岸線l上有長為300米的碼頭AB,在碼頭的最西端A處測得輪船M在它的北偏東45°方向上;同一時刻,在A點正東方向距離100米的C處測得輪船M在北偏東22°方向上.

1)求輪船M到海岸線l的距離;(結(jié)果精確到0.01米)

2)如果輪船M沿著南偏東30°的方向航行,那么該輪船能否行至碼頭AB靠岸?請說明理由.

(參考數(shù)據(jù):sin22°0.375,cos22°0.927,tan22°0.4041.732.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結(jié)論:①;②;③;④(為實數(shù)).其中結(jié)論正確的個數(shù)為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)今,越來越多的青少年在觀看影片《流浪地球》后,更加喜歡同名科幻小說,該小說銷量也急劇上升.書店為滿足廣大顧客需求,訂購該科幻小說若干本,每本進(jìn)價為20元.根據(jù)以往經(jīng)驗:當(dāng)銷售單價是25元時,每天的銷售量是250本;銷售單價每上漲1元,每天的銷售量就減少10本,書店要求每本書的利潤不低于10元且不高于18元.

1)直接寫出書店銷售該科幻小說時每天的銷售量(本)與銷售單價(元)之間的函數(shù)關(guān)系式及自變量的取值范圍.

2)書店決定每銷售1本該科幻小說,就捐贈元給困難職工,每天扣除捐贈后可獲得最大利潤為1960元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yx2+bx+c.

()若二次函數(shù)的圖象經(jīng)過(3,﹣2),且對稱軸為x1,求二次函數(shù)的解析式;

()如圖,在()的條件下,過定點的直線y=﹣kx+k4(k≤0)(1)中的拋物線交于點M,N,且拋物線的頂點為P,若△PMN的面積等于3,求k的值;

()當(dāng)cb2時,若在自變量x的值滿足b≤x≤b+3的情況下,與其對應(yīng)的函數(shù)值y的最小值為21,求此時二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)報名參加學(xué)校秋季運動會,有以下 5 個項目可供選擇:徑賽項目:100m、200m、1000m(分別用 A1、A2、A3 表示);田賽項目:跳遠(yuǎn),跳高(分別用 T1、T2 表示).

(1)該同學(xué)從 5 個項目中任選一個,恰好是田賽項目的概率 P ;

(2)該同學(xué)從 5 個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率 P1,利用列表法或樹狀圖加以說明;

(3)該同學(xué)從 5 個項目中任選兩個,則兩個項目都是徑賽項目的概率 P2 為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,∠ACB90°,OC2BOAC6,點B的坐標(biāo)為(1,0),拋物線y=﹣x2+bx+c經(jīng)過A、B兩點.

1)求點A的坐標(biāo);

2)求拋物線的解析式;

3)點P是直線AB上方拋物線上的一點,過點PPD垂直x軸于點D,交線段AB于點E,使PEDE

①求點P的坐標(biāo);

②在直線PD上是否存在點M,使△ABM為直角三角形?若存在,求出符合條件的所有點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年第18號臺風(fēng)米娜929日早晨5點整,由位于臺灣省周邊的B島東南方約980千米的西北太平洋洋面上(A)生成,向西北方向移動.并于9302030分到達(dá)B島后風(fēng)力增強且轉(zhuǎn)向,一路向北于24小時后在浙江省舟山市登陸.“米娜在登錄后風(fēng)力減弱且再一次轉(zhuǎn)向,以每小時20千米的速度向北偏東30的方向移動,距臺風(fēng)中心170千米的范圍內(nèi)是受臺風(fēng)影響的區(qū)域.已知上海位于舟山市北偏西7方向,且距舟山市250千米.

(1)臺風(fēng)中心從生成點(A)到達(dá)B島的速度是每小時多少千米?

(2)102日上海受到米娜影響,那么上海遭受這次臺風(fēng)影響的時間有多長?(結(jié)果保留整數(shù),參考數(shù)據(jù):,,;,.)

查看答案和解析>>

同步練習(xí)冊答案