【題目】在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,點A(0,﹣2),拋物線y=﹣2x+2的頂點為P,AP+OP的最小值為______.
【答案】2
【解析】
利用配方法得到P(m,2﹣m),則可判斷點P在直線y=﹣x+2上,作出點O(0,0)關(guān)于直線y=﹣x+2的對稱點O′,則O′的坐標(biāo)為(2,2),連接O′A交直線y=﹣x+2于P,如圖,利用兩點之間線段最短可判斷此時PA+PO的值最小,然后計算出O′A即可.
∵拋物線y=﹣2x+2=(x﹣m)2+2﹣m,
∴P(m,2﹣m),
∴點P在直線y=﹣x+2上,
點O(0,0)關(guān)于直線y=﹣x+2的對稱點O′的坐標(biāo)為(2,2),
連接O′A交直線y=﹣x+2于P,如圖,
∴PA+PO=PA+PO′=O′A,此時PA+PO的值最小,
∵點A(0,﹣2),
∴O′A==2,
∴AP+OP的最小值為2.
故答案為2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過兩點A(﹣3,0),B(0,3),且其對稱軸為直線x=﹣1.
(1)求此拋物線的解析式.
(2)若點Q是對稱軸上一動點,當(dāng)OQ+BQ最小時,求點Q的坐標(biāo).
(3)若點P是拋物線上點A與點B之間的動點(不包括點A,點B),求△PAB面積的最大值,并求出此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在東西方向的海岸線l上有長為300米的碼頭AB,在碼頭的最西端A處測得輪船M在它的北偏東45°方向上;同一時刻,在A點正東方向距離100米的C處測得輪船M在北偏東22°方向上.
(1)求輪船M到海岸線l的距離;(結(jié)果精確到0.01米)
(2)如果輪船M沿著南偏東30°的方向航行,那么該輪船能否行至碼頭AB靠岸?請說明理由.
(參考數(shù)據(jù):sin22°≈0.375,cos22°≈0.927,tan22°≈0.404,≈1.732.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結(jié)論:①;②;③;④(為實數(shù)).其中結(jié)論正確的個數(shù)為( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)今,越來越多的青少年在觀看影片《流浪地球》后,更加喜歡同名科幻小說,該小說銷量也急劇上升.書店為滿足廣大顧客需求,訂購該科幻小說若干本,每本進(jìn)價為20元.根據(jù)以往經(jīng)驗:當(dāng)銷售單價是25元時,每天的銷售量是250本;銷售單價每上漲1元,每天的銷售量就減少10本,書店要求每本書的利潤不低于10元且不高于18元.
(1)直接寫出書店銷售該科幻小說時每天的銷售量(本)與銷售單價(元)之間的函數(shù)關(guān)系式及自變量的取值范圍.
(2)書店決定每銷售1本該科幻小說,就捐贈元給困難職工,每天扣除捐贈后可獲得最大利潤為1960元,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c.
(Ⅰ)若二次函數(shù)的圖象經(jīng)過(3,﹣2),且對稱軸為x=1,求二次函數(shù)的解析式;
(Ⅱ)如圖,在(Ⅰ)的條件下,過定點的直線y=﹣kx+k﹣4(k≤0)與(1)中的拋物線交于點M,N,且拋物線的頂點為P,若△PMN的面積等于3,求k的值;
(Ⅲ)當(dāng)c=b2時,若在自變量x的值滿足b≤x≤b+3的情況下,與其對應(yīng)的函數(shù)值y的最小值為21,求此時二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)報名參加學(xué)校秋季運動會,有以下 5 個項目可供選擇:徑賽項目:100m、200m、1000m(分別用 A1、A2、A3 表示);田賽項目:跳遠(yuǎn),跳高(分別用 T1、T2 表示).
(1)該同學(xué)從 5 個項目中任選一個,恰好是田賽項目的概率 P 為 ;
(2)該同學(xué)從 5 個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率 P1,利用列表法或樹狀圖加以說明;
(3)該同學(xué)從 5 個項目中任選兩個,則兩個項目都是徑賽項目的概率 P2 為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,∠ACB=90°,OC=2BO,AC=6,點B的坐標(biāo)為(1,0),拋物線y=﹣x2+bx+c經(jīng)過A、B兩點.
(1)求點A的坐標(biāo);
(2)求拋物線的解析式;
(3)點P是直線AB上方拋物線上的一點,過點P作PD垂直x軸于點D,交線段AB于點E,使PE=DE.
①求點P的坐標(biāo);
②在直線PD上是否存在點M,使△ABM為直角三角形?若存在,求出符合條件的所有點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年第18號臺風(fēng)“米娜”于9月29日早晨5點整,由位于臺灣省周邊的B島東南方約980千米的西北太平洋洋面上(A點)生成,向西北方向移動.并于9月30日20時30分到達(dá)B島后風(fēng)力增強且轉(zhuǎn)向,一路向北于24小時后在浙江省舟山市登陸.“米娜”在登錄后風(fēng)力減弱且再一次轉(zhuǎn)向,以每小時20千米的速度向北偏東30的方向移動,距臺風(fēng)中心170千米的范圍內(nèi)是受臺風(fēng)影響的區(qū)域.已知上海位于舟山市北偏西7方向,且距舟山市250千米.
(1)臺風(fēng)中心從生成點(A點)到達(dá)B島的速度是每小時多少千米?
(2)10月2日上海受到“米娜”影響,那么上海遭受這次臺風(fēng)影響的時間有多長?(結(jié)果保留整數(shù),參考數(shù)據(jù):,,;,,.)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com