【題目】如圖,在△ABC中,以BC為直徑的圓交AC于點(diǎn)D,∠ABD=∠ACB.
(1)求證:AB是圓的切線;
(2)若點(diǎn)E是BC上一點(diǎn),已知BE=4,tan∠AEB= ,AB:BC=2:3,求圓的直徑.
【答案】
(1)證明:∵BC是直徑,
∴∠BDC=90°,
∴∠ACB+∠DBC=90°,
∵∠ABD=∠ACB,
∴∠ABD+∠DBC=90°
∴∠ABC=90°
∴AB⊥BC,
∴AB是圓的切線
(2)解:在RT△AEB中,tan∠AEB= ,
∴ = ,即AB= BE= ,
在RT△ABC中, = ,
∴BC= AB=10,
∴圓的直徑為10
【解析】(1)欲證明AB是圓的切線,只要證明∠ABC=90°即可.(2)在RT△AEB中,根據(jù)tan∠AEB= ,求出BC,在RT△ABC中,根據(jù) = 求出AB即可.
【考點(diǎn)精析】關(guān)于本題考查的切線的判定定理,需要了解切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段 ,分別以 為圓心,大于 為半徑作弧,連接弧的交點(diǎn)得到直線 ,在直線 上取一點(diǎn) ,使得 ,延長(zhǎng) 至 ,求 的度數(shù)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,EF、BG、DH 都垂直于 FH,AE⊥AB 且 AE=AB,BC⊥CD 且 BC=CD,請(qǐng)按照?qǐng)D中所標(biāo)注的數(shù)據(jù),計(jì)算圖中陰影部分的面積 S 是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①2a+b<0;②abc>0;③4a﹣2b+c>0;④a+c>0,其中正確結(jié)論的個(gè)數(shù)為( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC經(jīng)過一次平移到△DFE的位置,請(qǐng)回答下列問題:
(1)點(diǎn)C的對(duì)應(yīng)點(diǎn)是點(diǎn)__________,∠D=__________,BC=__________;
(2)連接CE,那么平移的方向就是__________的方向,平移的距離就是線段__________的長(zhǎng)度;
(3)連接AD,BF,BE,與線段CE相等的線段有__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=30°,∠B=60°,AB⊥AC。
(1)計(jì)算:∠DAB+∠B
(2)AB與CD平行嗎?AD與BC平行嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E為矩形ABCD的邊BC的中點(diǎn),以DE為直徑的⊙O交AD于H點(diǎn),過點(diǎn)H作HF⊥AE于點(diǎn)F.
(1)求證:HF是⊙O的切線;
(2)若DH=3,AF=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是小明家和學(xué)校所在地的簡(jiǎn)單地圖,已知OA=2cm,OB=2.5cm,OP=4cm,點(diǎn)C為OP的中點(diǎn),回答下列問題:
(1)圖中距小明家距離相同的是哪些地方?
(2)學(xué)校、商場(chǎng)和停車場(chǎng)分別在小明家的什么方位?
(3)如果學(xué)校距離小明家400m,那么商場(chǎng)和停車場(chǎng)分別距離小明家多遠(yuǎn)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com