【題目】已知點(diǎn)Mn,﹣n在第二象限,過點(diǎn)M的直線y=kx+b(0<k<1)分別交x軸、y軸于點(diǎn)A,B過點(diǎn)MMNx軸于點(diǎn)N,則下列點(diǎn)在線段AN的是( 。

A. ((k﹣1)n,0) B. ((k+n,0)) C. ,0) D. ((k+1)n,0)

【答案】D

【解析】

如圖所示,過MMCy軸于C,

Mn,﹣n ),MNx軸于點(diǎn)N,

C(0,﹣n),Nn,0),

Mn,﹣n )代入直線y=kx+b,可得b=﹣nkn,

y=kxn(1+k),

x=0,則y=﹣n(1+k),即B(0,﹣n(1+k),

n(1+kn,

n(1+kn,

y=0,則0=kxn(1+k),

解得x==n+1),即A[n+1),0)],

0k1,n0,

n+1)n(1+kn,

∴點(diǎn)[(k+1)n,0]在線段AN上.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.

(1)求證:AB=AC;

(2)若AB=4,BC=,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,AB=CD,EF分別為邊BCAD的中點(diǎn),AECD,延長(zhǎng)BA,CD,分別與EF的延長(zhǎng)線交于點(diǎn)G,H,連接AH,ED.

(1)求證:AHED

(2)求證:AE=AG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明用a小時(shí)清點(diǎn)完一批圖書的一半,小強(qiáng)加入清點(diǎn)另一半圖書的工作,兩人合作小時(shí)清點(diǎn)完另一半圖書.設(shè)小強(qiáng)單獨(dú)清點(diǎn)完這批圖書需要x小時(shí).

1)若a3,求小強(qiáng)單獨(dú)清點(diǎn)完這批圖書需要的時(shí)間.

2)請(qǐng)用含a的代數(shù)式表示x,并說明a滿足什么條件時(shí)x的值符合實(shí)際意義.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,的平分線,且交,如果,則的長(zhǎng)為(

A.2B.4C.6D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①2a+b<0;abc>0;4a2b+c>0;a+c>0,其中正確結(jié)論的個(gè)數(shù)為( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA,OB是⊙O的兩條半徑,OAOB,C是半徑OB上的一動(dòng)點(diǎn),連接AC并延長(zhǎng)交⊙OD,過點(diǎn)D作直線交OB延長(zhǎng)線于E,且DE=CE,已知OA=8.

(1)求證:ED是⊙O的切線;

(2)當(dāng)∠A=30°時(shí),求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,AB的垂直平分線MNAC于點(diǎn)D,交AB于點(diǎn)E

1)若∠A40°,求∠DBC的度數(shù);

2)若AE6,△CBD的周長(zhǎng)為20,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的半徑為5,EF是長(zhǎng)為8的弦,OGEF于點(diǎn)G,點(diǎn)AGO的延長(zhǎng)線上,且AO=13.弦EF從圖1的位置開始繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)過程中始終保持OGEF,如圖2.

[發(fā)現(xiàn)]在旋轉(zhuǎn)過程中,

(1)AG的最小值是   ,最大值是   

(2)當(dāng)EFAO時(shí),旋轉(zhuǎn)角α=   

[探究]EF繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)120°,如圖3,求AG的長(zhǎng).

[拓展]如圖4,當(dāng)AE切⊙O于點(diǎn)E,AGEO于點(diǎn)C,GHAEH.

(1)求AE的長(zhǎng).

(2)此時(shí)EH=   ,EC=   

查看答案和解析>>

同步練習(xí)冊(cè)答案