【題目】如圖,OA,OB是⊙O的兩條半徑,OA⊥OB,C是半徑OB上的一動點,連接AC并延長交⊙O于D,過點D作直線交OB延長線于E,且DE=CE,已知OA=8.
(1)求證:ED是⊙O的切線;
(2)當(dāng)∠A=30°時,求CD的長.
【答案】(1)證明見解析;(2).
【解析】
(1)如圖連接OD.欲證明DE是切線,只要證明OD⊥DE即可;
(2)解直角三角形求出OC,只要證明CD=OC即可解決問題;
(1)證明:如圖連接OD.
∵OA=OD,∴∠A=∠ODA.
∵OA⊥OB,∴∠AOB=90°,∴∠A+∠ACO=90°.
∵ED=EB,∴∠EDB=∠EBD=∠ACO,∴∠ODA+∠EDC=90°,∴OD⊥DE,∴DE是⊙O的切線.
(2)在Rt△AOC中,∵OA=8,∠A=30°,∴OC=OAtan30°=.
∵OA=OD,∴∠ODA=∠A=30°,∠DOA=120°,∠DOC=30°,∴∠DOC=∠ODC=30°,∴CD=OC=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)某工廠生產(chǎn)一種產(chǎn)品,當(dāng)產(chǎn)量至少為10噸,但不超過55噸時,每噸的成本(萬元/噸)與產(chǎn)量(噸)之間是一次函數(shù)關(guān)系,函數(shù)與自變量的部分對應(yīng)值如下表:
(噸) | 10 | 20 | 30 |
(萬元/噸) | 45 | 40 | 35 |
(1)求與的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)當(dāng)投入生產(chǎn)這種產(chǎn)品的總成本為1200萬元時,求該產(chǎn)品的總產(chǎn)量;(注:總成本=每噸成本×總產(chǎn)量)
(3)市場調(diào)查發(fā)現(xiàn),這種產(chǎn)品每月銷售量(噸)與銷售單價(萬元/噸)之間滿足如圖所示的函數(shù)關(guān)系.該廠第一個月按同一銷售單價賣出這種產(chǎn)品25噸,請求出該廠第一個月銷售這種產(chǎn)品獲得的利潤.(注:利潤=售價—成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=540,以AB為直徑的⊙O分別交AC,BC于點D,E,過點B作⊙O的切線,交AC的延長線于點F。
(1)求證:BE=CE;
(2)求∠CBF的度數(shù);
(3)若AB=6,求的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點M(n,﹣n )在第二象限,過點M的直線y=kx+b(0<k<1)分別交x軸、y軸于點A,B,過點M作MN⊥x軸于點N,則下列點在線段AN的是( 。
A. ((k﹣1)n,0) B. ((k+)n,0)) C. (,0) D. ((k+1)n,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一小球沿與地面成一定角度的方向飛出,小球的飛行路線是一條拋物線,如果不考慮空氣阻力,小球的飛行高度y(單位:m)與飛行時間x(單位:s)之間具有函數(shù)關(guān)系y=﹣5x2+20x,請根據(jù)要求解答下列問題:
(1)在飛行過程中,當(dāng)小球的飛行高度為15m時,飛行時間是多少?
(2)在飛行過程中,小球從飛出到落地所用時間是多少?
(3)在飛行過程中,小球飛行高度何時最大?最大高度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在足夠大的空地上有一段長為a米的舊墻MN,某人利用舊墻和木欄圍成一個矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄.
(1)若a=20,所圍成的矩形菜園的面積為450平方米,求所利用舊墻AD的長;
(2)求矩形菜園ABCD面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為執(zhí)行“兩免一補”政策,某地區(qū)2014年投入教育經(jīng)費2500萬元,預(yù)計到2016年,三年共投入8275萬元.設(shè)投入教育經(jīng)費的年平均增長率為x,那么下列方程正確的是( )
A. 2500x28275 B. 2500(1+x%)28275
C. 2500(1+x)28275 D. 2500+2500(1+x)+2500(1+x)28275
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個拱形橋架可以近似看作是由等腰梯形ABD8D1和其上方的拋物線D1OD8組成.若建立如圖所示的直角坐標(biāo)系,跨度AB=44米,∠A=45°,AC1=4米,點D2的坐標(biāo)為(-13,-1.69),則橋架的拱高OH=________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,2BD=3DC,E是AC的中點,如S△ABC=10,則S△ADE=( )
A.5B.4 C.3 D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com