【題目】如果手頭沒有硬幣,下列方法可以模擬擲硬幣實驗的是( )

A. 擲一個瓶蓋,蓋面朝上代表正面,蓋面朝下代表反面

B. 擲一枚圖釘,釘尖著地代表正面,釘帽著地代表反面

C. 用計算器產(chǎn)生12兩個隨機整數(shù),1代表正面,2代表反面

D. 轉(zhuǎn)動如圖所示的裝盤,指針指向代表正面,指針指向代表反面

【答案】A

【解析】A選項中一個瓶蓋可用蓋面朝上表示硬幣的正面,蓋面朝下表示硬幣的反面,兩者出現(xiàn)的概率一樣,可作實驗替代物,所以本選項正確

B選項中,圖釘尖朝上的概率大于面朝上的概率,不可做實驗替代物,所以本選項錯誤;

C選項中,用計算器產(chǎn)生12兩個隨機整數(shù),1代表正面,2代表反面,兩數(shù)產(chǎn)生的概率不同,不能代替拋擲硬幣的實驗,所以本選項錯誤

D選項中,轉(zhuǎn)動如圖所示的裝盤,指針指向代表正面,指針指向代表反面,由于還有一個“黃色區(qū)域”,本實驗中有三種等可能結(jié)果,與拋擲硬幣實驗情況不一樣,所以本選項錯誤;

故選A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】請在橫線上填上合適的內(nèi)容,完成下面的證明:

如圖,射線AH交折線ACGFEN于點B、D、E.已知∠A=∠1,∠C=∠F,BM平分∠CBD,EN平分∠FEH.求證:∠2=∠3.

證明:∵∠A=∠1(已知)

∴AC∥GF(

∴( )(

∵∠C=∠F(已知)

∴∠F=∠G

∴( )(

∴( )(

∵BM平分∠CBD,EN平分∠FEH

∴∠2= ∠3=

∴∠2=∠3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,三角形ABC的頂點均在格點上在建立平面直角坐標系后,A的坐標為(2,4),B的坐標為(1,1),C的坐標為(3,2).

(1)將三角形ABC先沿著x軸負方向平移6個單位再沿y軸負方向平移2個單位得到三角形A1B1C1,在圖中畫出三角形A1B1C1

(2)分別寫出A1,B1C1的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司銷售一種進價為/個的計算器,其銷售量(萬個)與銷售價格(元/個)的變化如下表:

價格(元/

銷售量(萬個)

同時,銷售過程中的其他開支(不含造價)總計萬元.

)觀察并分析表中的之間的對應關(guān)系,用所學過的一次函數(shù),反比例函數(shù)或二次函數(shù)的有關(guān)知識寫出(萬個)與(元/個)的函數(shù)解析式.

)求出該公司銷售這種計算器的凈得利潤(萬個)與銷售價格(元/個)的函數(shù)解析式,銷售價格定為多少元時凈得利潤最大,最大值是多少?

)該公司要求凈得利潤不能低于萬元,請寫出銷售價格(元/個)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從邊長為a的正方形中剪掉一個邊長為b的正方形(如圖),然后將剩余部分拼成一個長方形(如圖).

1)上述操作能驗證的等式是   ;(請選擇正確的一個)

Aa22abb2=(ab)2 Ba2b2=(ab)(abCa2aba(ab)

2)應用你從(1)選出的等式,完成下列各題:

①已知x24y212,x2y4,求x2y的值.

②計算:(1)(1)(1)…(1)(1).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司為獎勵在趣味運動會上取得好成績的員工,計劃購買甲、乙兩種獎品共20件,其中甲種獎品每件40元,乙種獎品每件30元.

(1)如果購買甲、乙兩種獎品共花費了650元,求甲、乙兩種獎品各購買了多少件;

(2)如果購買乙種獎品的件數(shù)不超過甲種獎品件數(shù)的2倍,總花費不超過680元,求該公司有哪幾種不同的購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某社區(qū)準備在甲、乙兩位射箭愛好者中選出一人參加集訓,兩人各射了5劍,他們的總成績單位:環(huán)相同,小宇根據(jù)他們的成績繪制了尚不完整的統(tǒng)計圖表,并計算了甲成績的平均數(shù)和方差見小宇的作業(yè)

____________;

請完成圖中乙成績變化情況的折線;

觀察你補全的折線圖可以看出______的成績比較穩(wěn)定參照小宇的計算方法,計算乙成績的方差,并驗證你的判斷;并判斷誰將被選中.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD為等邊△ABC的高,E、F分別為線段ADAC上的動點,且AECF,當BFCE取得最小值時,∠AFB_______°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖,已知∠MAN120°,AC平分∠MAN,∠ABC=∠ADC90°,則能得到如下兩個結(jié)論:①DCBC;②AD+ABAC 請你證明結(jié)論

2)如圖,把(1)中的條件“∠ABC=∠ADC90°”改為∠ABC+ADC180°,其他條件不變,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.

3)如圖3,如果DAM的反向延長線上,把(1)中的條件“∠ABC=∠ADC90°”改為∠ABC=∠ADC,其他條件不變,(1)中的結(jié)論是否仍然成立?若成立,請直接回答;若不成立,你又能得出什么結(jié)論,直接寫出你的結(jié)論.

查看答案和解析>>

同步練習冊答案