【題目】如圖,在△BCE中,點A是邊BE上一點,以AB為直徑的⊙O與CE相切于點D,AD∥OC,點F為OC與⊙O的交點,連接AF.
(1)求證:CB是⊙O的切線;
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.
【答案】
(1)證明:連接OD,與AF相交于點G,
∵CE與⊙O相切于點D,
∴OD⊥CE,
∴∠CDO=90°,
∵AD∥OC,
∴∠ADO=∠DOC,∠DAO=∠BOC,
∵OA=OD,
∴∠ADO=∠DAO,
∴∠DOC=∠BOC,
在△CDO和△CBO中,
,
∴△CDO≌△CBO,
∴∠CBO=∠CDO=90°,
∴CB是⊙O的切線
(2)由(1)可知∠DOA=∠BCO,∠DOC=∠BOC,
∵∠ECB=60°,
∴∠DCO=∠BCO= ∠ECB=30°,
∴∠DOC=∠BOC=60°,
∴∠DOA=60°,
∵OA=OD,
∴△OAD是等邊三角形,
∴AD=OD=OF,∵∠GOF=∠ADO,
在△ADG和△FOG中,
,
∴△ADG≌△FOG,
∴S△ADG=S△FOG,
∵AB=6,
∴⊙O的半徑r=3,
∴S陰=S扇形ODF= = π
【解析】(1)欲證明CB是⊙O的切線,只要證明BC⊥OB,可以證明△CDO≌△CBO解決問題.(2)首先證明S陰=S扇形ODF , 然后利用扇形面積公式計算即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求證:菱形的兩條對角線互相垂直. 已知:如圖,四邊形ABCD是菱形,對角線AC,BD交于點O.
求證:AC⊥BD.
以下是排亂的證明過程:
①又BO=DO;
②∴AO⊥BD,即AC⊥BD;
③∵四邊形ABCD是菱形;
④∴AB=AD.
證明步驟正確的順序是( )
A.③→②→①→④
B.③→④→①→②
C.①→②→④→③
D.①→④→③→②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的袋子中有一個黑球a和兩個白球b,c(除顏色外其他均相同).用樹狀圖(或列表法)解答下列問題:
(1)小麗第一次從袋子中摸出一個球不放回,第二次又從袋子中摸出一個球.則小麗兩次都摸到白球的概率是多少?
(2)小強第一次從袋子中摸出一個球,摸到黑球不放回,摸到白球放回;第二次又從袋子中摸出一個球,則小強兩次都摸到白球的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中有四點A(﹣2,0),B(﹣1,0),C(0,1),D(0,2)在A、B、C、D中取兩點與點O為頂點作三角形,所作三角形是等腰直角三角形的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y1=x+m的圖象與反比例函數(shù)y2= 的圖象交于A、B兩點,已知當(dāng)x>1時,y1>y2;當(dāng)0<x<1時,y1<y2 .
(1)求一次函數(shù)的函數(shù)表達式;
(2)已知反比例函數(shù)在第一象限的圖象上有一點C到x軸的距離為2,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸交于點A,與y軸交于點B,與直線y=x交于點E,點E的橫坐標(biāo)為3
(1) 求點A的坐標(biāo)
(2) 在x軸上有一點P(m,0),過點P作x軸的垂線,與直線交于點C,與直線y=x 交于點D.若CD≥4,則m的取值范圍為___________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A是射線BE上一點,過A作CA⊥BE交射線BF于點C,AD⊥BF交射線BF于點D,給出下列結(jié)論:①∠1是∠B的余角;②圖中互余的角共有3對;③∠1的補角只有∠ACF;④與∠ADB互補的角共有3個.則上述結(jié)論正確的個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長為a.直線y=bx+c交x軸于E,交y軸于F,且a,b,c分別滿足:-(a-4)2≥0,c=++8.
(1)直線y=bx+c的解析式為________;正方形OABC的對角線的交點D的坐標(biāo)為________;
(2)若正方形OABC沿x軸負方向以每秒移動1個單位長度的速度平移,設(shè)平移的時間為t秒,問是否存在t的值,使直線EF平分正方形OABC的面積?若存在,請求出t的值;若不存在,請說明理由;
(3)點P為正方形OABC的對角線AC上的動點(端點A、C除外),PM⊥PO,交直線AB于M,在備用圖中畫圖分析,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:|m|=2,a,b互為相反數(shù),且都不為零,c,d互為倒數(shù).則2a+2b+(﹣3cd)﹣m的值是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com