如圖,△ABC和△FPQ均是等邊三角形,點(diǎn)D、E、F分別是△ABC三邊的中點(diǎn),點(diǎn)P在AB邊上,連接EF、QE.若AB=6,PB=1,則QE=   
【答案】分析:連結(jié)FD,根據(jù)等邊三角形的性質(zhì)由△ABC為等邊三角形得到AC=AB=6,∠A=60°,再根據(jù)點(diǎn)D、E、F分別是等邊△ABC三邊的中點(diǎn),則AD=BD=AF=3,DP=2,EF為△ABC的中位線,于是可判斷△ADF為等邊三角形,得到∠FDA=60°,利用三角形中位線的性質(zhì)得EF∥AB,EF=AB=3,根據(jù)平行線性質(zhì)得∠1+∠3=60°;又由于△PQF為等邊三角形,則∠2+∠3=60°,F(xiàn)P=FQ,所以∠1=∠2,然后根據(jù)“SAS”判斷△FDP≌△FEQ,所以DP=QE=2.
解答:解:連結(jié)FD,如圖,
∵△ABC為等邊三角形,
∴AC=AB=6,∠A=60°,
∵點(diǎn)D、E、F分別是等邊△ABC三邊的中點(diǎn),AB=6,PB=1,
∴AD=BD=AF=3,DP=DB-PB=3-1=2,EF為△ABC的中位線,
∴EF∥AB,EF=AB=3,△ADF為等邊三角形,
∴∠FDA=60°,
∴∠1+∠3=60°,
∵△PQF為等邊三角形,
∴∠2+∠3=60°,F(xiàn)P=FQ,
∴∠1=∠2,
∵在△FDP和△FEQ中

∴△FDP≌△FEQ(SAS),
∴DP=QE,
∵DP=2,
∴QE=2.
故答案為2.
點(diǎn)評(píng):本題考查了全等三角形的判定與性質(zhì):判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的對(duì)應(yīng)邊相等.也考查了等邊三角形的判定與性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC和△DEC都是等腰直角三角形,C為它們的公共直角頂點(diǎn),連AD,BE,F(xiàn)為線段AD的中點(diǎn),連CF,
(1)如圖1,當(dāng)D點(diǎn)在BC上時(shí),BE與CF的數(shù)量關(guān)系是
 
,位置關(guān)系是
 
,請(qǐng)證明.
精英家教網(wǎng)
(2)如圖2,把△DEC繞C點(diǎn)順時(shí)針旋轉(zhuǎn)一個(gè)銳角,其他條件不變,問(1)中的關(guān)系是否仍然成立?如果成立請(qǐng)證明.如果不成立,請(qǐng)寫出相應(yīng)的正確的結(jié)論并加以證明.
(3)如圖3,把△DEC繞C點(diǎn)順時(shí)針旋轉(zhuǎn)45°,若∠DCF=30°,直接寫出
BGCG
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,△ABC和△ADE都是等腰直角三角形,∠ACB和∠AED都是直角,點(diǎn)C在AD上,如果△ABC經(jīng)旋轉(zhuǎn)后能與△ADE重合,那么點(diǎn)
A
是旋轉(zhuǎn)中心,旋轉(zhuǎn)的最小度數(shù)為
45
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC和△CDE均為等腰直角三角形,點(diǎn)B,C,D在一條直線上,點(diǎn)M是AE的中點(diǎn),BC=3,CD=1.
(1)求證:tan∠AEC=
BCCD
;
(2)請(qǐng)?zhí)骄緽M與DM的數(shù)量關(guān)系,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四邊形ACDE是平行四邊形,連接CE交AD于點(diǎn)F,連接BD交 CE于點(diǎn)G,連接BE.下列結(jié)論中:
①CE=BD;  ②△ADC是等腰直角三角形;③∠ADB=∠AEB;    ④CD=EF.
一定正確的結(jié)論有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC和△ADE都是等腰直角三角形,AB=AC,AD=AE,∠BAC=∠DAE=90°.
(1)求證:△ACE≌△ABD;
(2)若AC=2,EC=4,DC=2
2
.求∠ACD的度數(shù);
(3)在(2)的條件下,直接寫出DE的長(zhǎng)為
2
10
2
10
.(只填結(jié)果,不用寫出計(jì)算過程)

查看答案和解析>>

同步練習(xí)冊(cè)答案