【題目】如圖,⊙O直徑AB和弦CD相交于點(diǎn)E,AE=2,EB=6,∠DEB=30°,求弦CD長(zhǎng).
【答案】CD=2.
【解析】
試題分析:過(guò)O作OF垂直于CD,連接OD,利用垂徑定理得到F為CD的中點(diǎn),由AE+EB求出直徑AB的長(zhǎng),進(jìn)而確定出半徑OA與OD的長(zhǎng),由OA﹣AE求出OE的長(zhǎng),在直角三角形OEF中,利用30°所對(duì)的直角邊等于斜邊的一半求出OF的長(zhǎng),在直角三角形ODF中,利用勾股定理求出DF的長(zhǎng),由CD=2DF即可求出CD的長(zhǎng).
試題解析:過(guò)O作OF⊥CD,交CD于點(diǎn)F,連接OD,
∴F為CD的中點(diǎn),即CF=DF,
∵AE=2,EB=6,
∴AB=AE+EB=2+6=8,
∴OA=4,
∴OE=OA﹣AE=4﹣2=2,
在Rt△OEF中,∠DEB=30°,
∴OF=OE=1,
在Rt△ODF中,OF=1,OD=4,
根據(jù)勾股定理得:DF==,
則CD=2DF=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用反證法證明“在△ABC中,∠A>∠B,求證:BC>AC”時(shí),第一步應(yīng)假設(shè):________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)P(1,﹣2)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為( 。
A. (1,2) B. (1,﹣2) C. (﹣1,2) D. (﹣1,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【問(wèn)題探究】
(1)如圖1,銳角△ABC中,分別以AB、AC為邊向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,連接BD,CE,試猜想BD與CE的大小關(guān)系,并說(shuō)明理由.
【深入探究】
(2)如圖2,四邊形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45,求BD的長(zhǎng).
(3)如圖3,在(2)的條件下,當(dāng)△ACD在線段AC的左側(cè)時(shí),求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,是假命題的是( 。
A.對(duì)頂角相等B.等腰三角形的兩底角相等
C.兩直線平行,同旁內(nèi)角相等D.一組鄰邊相等的平行四邊形是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)等腰三角形的兩邊長(zhǎng)是3cm和7cm,則它的周長(zhǎng)為( 。
A. 13cm B. 17cm C. 13或17cm D. 10cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AC平分∠BAD,CE⊥AB于點(diǎn)E,∠ADC+∠ABC=180°,有下列結(jié)論:①CD=CB;②AD+AB=2AE;③∠ACD=∠BCE;④AB-AD=2BE.其中正確的是( )
A. ② B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是( 。
A.減去一個(gè)數(shù)等于加上這個(gè)數(shù)
B.兩個(gè)相反數(shù)相減得0
C.兩個(gè)數(shù)相減,差一定小于被減數(shù)
D.兩個(gè)數(shù)相減,差不一定小于被減數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知BE,CF分別是△ABC中AC,AB邊上的高線,在BE的延長(zhǎng)線上取點(diǎn)P,使PB=AC,在CF的延長(zhǎng)線上取點(diǎn)Q,使CQ=AB.求證:AQ⊥AP.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com