【題目】一艘在南北航線上的測(cè)量船,于A點(diǎn)處測(cè)得海島B在點(diǎn)A的南偏東30°方向,繼續(xù)向南航行30海里到達(dá)C點(diǎn)時(shí),測(cè)得海島BC點(diǎn)的北偏東15°方向,那么海島B離此航線的最近距離是(結(jié)果保留小數(shù)點(diǎn)后兩位)(參考數(shù)據(jù):)(

A. 4.64海里 B. 5.49海里 C. 6.12海里 D. 6.21海里

【答案】B

【解析】

根據(jù)題意畫出圖如圖所示:作BDAC,取BE=CE,根據(jù)三角形內(nèi)角和和等腰三角形的性質(zhì)得出BA=BEAD=DE,設(shè)BD=x,RtABD中,根據(jù)勾股定理得AD=DE=x,AB=BE=CE=2x,由AC=AD+DE+EC=2x+2x=30,解之即可得出答案.

根據(jù)題意畫出圖如圖所示:作BDAC,取BE=CE,

AC=30,∠CAB=30°∠ACB=15°,
∴∠ABC=135°,
又∵BE=CE,
∴∠ACB=∠EBC=15°,
∴∠ABE=120°,
又∵∠CAB=30°
BA=BEAD=DE,
設(shè)BD=x,
RtABD中,
∴AD=DE=x,AB=BE=CE=2x,
∴AC=AD+DE+EC=2x+2x=30
x==≈5.49,
故答案選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,學(xué)校環(huán)保社成員想測(cè)量斜坡CD旁一棵樹(shù)AB的高度,他們先在點(diǎn)C處測(cè)得樹(shù)頂B的仰角為60°,然后在坡頂D測(cè)得樹(shù)頂B的仰角為30°,已知DEEA,斜坡CD的長(zhǎng)度為30m,DE的長(zhǎng)為15m,則樹(shù)AB的高度是_____m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究

如圖1,在平面直角坐標(biāo)系xOy中,拋物線W的函數(shù)表達(dá)式為y=﹣x2+x+4.拋物線Wx軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè),與y軸交于點(diǎn)C,它的對(duì)稱軸與x軸交于點(diǎn)D,直線l經(jīng)過(guò)C、D兩點(diǎn).

(1)A、B兩點(diǎn)的坐標(biāo)及直線l的函數(shù)表達(dá)式.

(2)將拋物線W沿x軸向右平移得到拋物線W′,設(shè)拋物線W′的對(duì)稱軸與直線l交于點(diǎn)F,當(dāng)△ACF為直角三角形時(shí),求點(diǎn)F的坐標(biāo),并直接寫出此時(shí)拋物線W′的函數(shù)表達(dá)式.

(3)如圖2,連接AC,CB,將△ACD沿x軸向右平移m個(gè)單位(0<m≤5),得到△A′C′D′.設(shè)A′C交直線l于點(diǎn)M,C′D′CB于點(diǎn)N,連接CC′,MN.求四邊形CMNC′的面積(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則以下結(jié)論同時(shí)成立的是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小莉和哥哥玩撲克牌游戲,小莉有數(shù)字為1,2,3,5的四張牌,哥哥有數(shù)字為4,6,7,8的四張牌,按如下游戲規(guī)則進(jìn)行:小莉和哥哥從各自的四張牌中隨機(jī)抽出一張,然后將抽出的兩張撲克牌數(shù)字相加,如果和為偶數(shù),則小莉勝;如果和為奇數(shù),則哥哥勝.

(1)請(qǐng)用數(shù)形圖或列表法分別求出小莉勝和哥哥勝的概率;

(2)這個(gè)游戲公平嗎?若公平,請(qǐng)說(shuō)明理由;若不公平,請(qǐng)你設(shè)計(jì)一種公平的游戲規(guī)則.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)(x>0,0<m<n)的圖象上,對(duì)角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.

(1)當(dāng)m=4,n=20時(shí).

①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.

②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說(shuō)明理由.

(2)四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】水利部確定每年的3月22日至28日為“中國(guó)水周”(1994年以前為7月1日至7日),從1991年起,我國(guó)還將每年5月的第二周作為城市節(jié)約用水宣傳周.某社區(qū)為了進(jìn)一步提高居民珍惜水、保護(hù)水和水憂患意識(shí),提倡節(jié)約用水,從本社區(qū)5000戶家庭中隨機(jī)抽取100戶,調(diào)查他們家庭每月的平均用水量,并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計(jì)圖表:

用戶月用水量頻數(shù)分布表

平均用水量(噸)

頻數(shù)

頻率

3~6噸

10

0.1

6~9噸

m

0.2

9~12噸

36

0.36

12~15噸

25

n

15~18噸

9

0.09

請(qǐng)根據(jù)上面的統(tǒng)計(jì)圖表,解答下列問(wèn)題:

(1)在頻數(shù)分布表中:m=__ __,n=__ __;

(2)根據(jù)題中數(shù)據(jù)補(bǔ)全頻數(shù)直方圖;

(3)如果自來(lái)水公司將基本月用水量定為每戶每月12噸,不超過(guò)基本月用水量的部分享受基本價(jià)格,超出基本月用水量的部分實(shí)行加價(jià)收費(fèi),那么該社區(qū)用戶中約有多少戶家庭能夠全部享受基本價(jià)格?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)(x>0,0<m<n)的圖象上,對(duì)角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.

(1)當(dāng)m=4,n=20時(shí).

①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.

②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說(shuō)明理由.

(2)四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

如圖1,在線段AB上找一點(diǎn)C(AC>BC),若BC:AC=AC:AB,則稱點(diǎn)C為線段AB的黃金分割點(diǎn),這時(shí)比值為≈0.618,人們把稱為黃金分割數(shù).長(zhǎng)期以來(lái),很多人都認(rèn)為黃金分割數(shù)是一個(gè)很特別的數(shù),我國(guó)著名數(shù)學(xué)家華羅庚先生所推廣的優(yōu)選法中,就有一種0.618法應(yīng)用了黃金分割數(shù).

我們可以這樣作圖找到已知線段的黃金分割點(diǎn):如圖2,在數(shù)軸上點(diǎn)O表示數(shù)0,點(diǎn)E表示數(shù)2,過(guò)點(diǎn)E作EF⊥OE,且EF=OE,連接OF;以F為圓心,EF為半徑作弧,交OF于H;再以O(shè)為圓心,OH為半徑作弧,交OE于點(diǎn)P,則點(diǎn)P就是線段OE的黃金分割點(diǎn).

根據(jù)材料回答下列問(wèn)題:(1)線段OP長(zhǎng)為_____,點(diǎn)P在數(shù)軸上表示的數(shù)為_____;(2)在(1)中計(jì)算線段OP長(zhǎng)的依據(jù)是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案