【題目】綜合與探究

如圖1,在平面直角坐標系xOy中,拋物線W的函數(shù)表達式為y=﹣x2+x+4.拋物線Wx軸交于A,B兩點(點B在點A的右側,與y軸交于點C,它的對稱軸與x軸交于點D,直線l經(jīng)過C、D兩點.

(1)A、B兩點的坐標及直線l的函數(shù)表達式.

(2)將拋物線W沿x軸向右平移得到拋物線W′,設拋物線W′的對稱軸與直線l交于點F,當△ACF為直角三角形時,求點F的坐標,并直接寫出此時拋物線W′的函數(shù)表達式.

(3)如圖2,連接AC,CB,將△ACD沿x軸向右平移m個單位(0<m≤5),得到△A′C′D′.設A′C交直線l于點M,C′D′CB于點N,連接CC′,MN.求四邊形CMNC′的面積(用含m的代數(shù)式表示).

【答案】(1)點A坐標為(﹣3,0),點B的坐標為(7,0),y=﹣2x+4;(2) 點F的坐標為(5,﹣6),y=﹣x2+x;(3) 四邊形CMNC′的面積為m2.

【解析】

根據(jù)拋物線的解析式,令y=0即可求出兩點的坐標.根據(jù)拋物線的解析式可分別求出C,D兩點的坐標,再用待定系數(shù)法即可求出直線的表達式.

根據(jù)題意,利用角的等量關系可以得到∠1=3,進而得到tan1=tan3,根據(jù)三角函數(shù)的計算方法列出等式,根據(jù)一次函數(shù)的解析式設點的坐標為(xF,﹣2xF+4),將各線段的長度代入等式即可求出點F的坐標,再根據(jù)平移的法則即可求出w的表達式.

根據(jù)平移,可以得到點C′,A′,D的坐標,再根據(jù)待定系數(shù)法可以得到直線AC′,BC,CD的解析式,根據(jù)交點的計算方法列方程組可以求得點M,N的坐標,根據(jù)平移的定義和平行四邊形的定義可知四邊形CMNC是平行四邊形,再根據(jù)平行四邊形面積的計算方法可以得到平行四邊形CMNC的面積.

(1)當y=0時,﹣x2+4=0,解得x1=﹣3,x2=7,

∴點A坐標為(﹣3,0),點B的坐標為(7,0).

∴拋物線w的對稱軸為直線x=2,

∴點D坐標為(2,0).

x=0時,y=4,

∴點C的坐標為(0,4).

設直線l的表達式為ykxb,

解得

∴直線l的解析式為y=﹣2x+4;

(2)∵拋物線w向右平移,只有一種情況符合要求,

即∠FAC=90°,如圖.

此時拋物線w的對稱軸與x軸的交點為G

∵∠1+2=90°2+3=90°,

∴∠1=3,

tan1=tan3,

=.設點F的坐標為xF,﹣2xF+4),

,解得xF=5,﹣2xF+4=﹣6,

∴點F的坐標為(5,﹣6),此時拋物線w的函數(shù)表達式為y=﹣x2x;

(3)由平移可得:點C,點A,點D的坐標分別為C′(m,4),A′(﹣3+m,0),D′(2+m,0),CCx軸,CDCD,

可用待定系數(shù)法求得

直線AC的表達式為yx+4﹣m,

直線BC的表達式為y=﹣x+4,

直線CD的表達式為y=﹣2x+2m+4,

分別解方程組

解得

∴點M的坐標為(m,﹣m+4),點N的坐標為(m,﹣ m+4),

yMyN

MNx軸,

CCx軸,

CCMN

CDCD,

∴四邊形CMNC是平行四邊形,

Sm[4﹣(﹣m+4)]

m2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場有一個可以自由轉動的圓形轉盤(如圖).規(guī)定:顧客購物100元以上可以獲得一次轉動轉盤的機會,當轉盤停止時,指針落在哪一個區(qū)域就獲得相應的獎品(指針指向兩個扇形的交線時,當作指向右邊的扇形).下表是活動進行中的一組統(tǒng)計數(shù)據(jù):

轉動轉盤的次數(shù)n

100

150

200

500

800

1000

落在鉛筆的次數(shù)m

68

111

136

345

546

701

落在鉛筆的頻率

(結果保留小數(shù)點后兩位)

0.68

0.74

0.68

0.69

0.68

0.70

1)轉動該轉盤一次,獲得鉛筆的概率約為_______;(結果保留小數(shù)點后一位)

2)鉛筆每只0.5元,飲料每瓶3元,經(jīng)統(tǒng)計該商場每天約有4000名顧客參加抽獎活動,請計算該商場每天需要支出的獎品費用;

3)在(2)的條件下,該商場想把每天支出的獎品費用控制在3000元左右,則轉盤上“一瓶飲料”區(qū)域的圓心角應調整為______度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在二次函數(shù)y=-x2bxc中,函數(shù)y與自變量x的部分對應值如下表:

x

……

2

0

3

4

……

y

……

7

m

n

7

……

mn的大小關系為( )

A. mn B. mn C. mn D. 無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,對正方形ABCD及其內部的每個點進行如下操作:把每個點的橫、縱坐標都乘以同一個實數(shù)a,將得到的點先向右平移m個單位,再向上平移n個單位(m>0,n>0),得到正方形A'B'C'D'及其內部的點,其中點A、B的對應點分別為A',B'.已知正方形ABCD內部的一個點F經(jīng)過上述操作后得到的對應點F'與點F重合,則點F的坐標是( 。

A. (1,4) B. (1,5) C. (﹣1,4) D. (4,1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CDABH,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AGCDK

1)如圖1,求證:KE=GE;

2)如圖2,連接CABG,若∠FGB=ACH,求證:CAFE

3)如圖3,在(2)的條件下,連接CGAB于點N,若sinE=,AK=,求CN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A=∠B=90°,P是線段AB上的一個動點.

(1)若AD=2,BC=6,AB=8,且以A,D,P為頂點的三角形與以B,C,P為頂點的三角形相似,求AP的長;

(2)若AD=a,BC=b,AB=m,則當a,b,m滿足什么關系時,一定存在點P使△ADP∽△BPC?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象經(jīng)過點A(1,3)、B(3,m).

(1)求反比例函數(shù)的解析式及B點的坐標;

(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一艘在南北航線上的測量船,于A點處測得海島B在點A的南偏東30°方向,繼續(xù)向南航行30海里到達C點時,測得海島BC點的北偏東15°方向,那么海島B離此航線的最近距離是(結果保留小數(shù)點后兩位)(參考數(shù)據(jù):)(

A. 4.64海里 B. 5.49海里 C. 6.12海里 D. 6.21海里

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點P、D分別是BC、AC邊上的點,且∠APD=B.

(1)求證:AC·CD=CP·BP;

(2)AB=10,BC=12,當PDAB時,求BP的長.

查看答案和解析>>

同步練習冊答案