【題目】一次數(shù)學(xué)測(cè)試后,某班40名學(xué)生的成績(jī)被分為5組,第1~4組的頻數(shù)分別為12、10、6、8,則第5組的頻率是(
A.0.1
B.0.2
C.0.3
D.0.4

【答案】A
【解析】解:根據(jù)題意得:40﹣(12+10+6+8)=40﹣36=4, 則第5組的頻率為4÷40=0.1,
故選A.
根據(jù)第1~4組的頻數(shù),求出第5組的頻數(shù),即可確定出其頻率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】PM2.5是指大氣中直徑小于或等于0.000 002 5米的顆粒物,將0.000 002 5用科學(xué)記數(shù)法表示為( 。
A.0.25×10﹣5
B.2.5×10﹣5
C.2.5×10﹣6
D.2.5×10﹣7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知13 = 1 =×12×22, 13+23=9=×22×32,13 + 23 + 33 = 36 =×32×42, ,按照這個(gè)規(guī)律完成下列問(wèn)題:

(1)13+23+33+43+53=________=× ( )2 × ( )2

(2)猜想:13+23+33++n3=___________

(3)利用(2)中的結(jié)論計(jì)算:(寫(xiě)出計(jì)算過(guò)程)

113+123 + 313+143 + 153+163 + ……+393+403.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)F在邊BC上,且AF=AD,過(guò)點(diǎn)DDEAF,垂足為點(diǎn)E

1)求證:DE=AB

2)以A為圓心,AB長(zhǎng)為半徑作圓弧交AF于點(diǎn)G,若BF=FC=1,求扇形ABG的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1和圖2,∠ACB=90°,AC=BC,BD⊥DE,AE⊥DE,足分別為D、E.


(1)圖1中,證明:△ACE≌△CBD;

(2)圖2中,若AE=2,BD=4,計(jì)算DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一道多項(xiàng)式化簡(jiǎn)題已知A=, B= , C=

ABC 的值,明明同學(xué)做了之后發(fā)現(xiàn)值與x無(wú)關(guān)你覺(jué)得明明的做法正確嗎?請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠AOB=P為∠AOB內(nèi)部一點(diǎn),點(diǎn)P關(guān)于OA、OB的對(duì)稱(chēng)點(diǎn)分別為P1、P2,則△OP1P2_______________三角形;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)AB與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,且∠BAO=30°,現(xiàn)將△OAB沿直線(xiàn)AB翻折,得到△CAB. 連接OC交AB于點(diǎn)D.

1)求證:ADOC,ODOA ;

2)若RtAOB的斜邊AB,則OB_____OA_____;點(diǎn)C的坐標(biāo)為_______;

3)在(2)的條件下,動(dòng)點(diǎn)F從點(diǎn)O出發(fā),以2個(gè)單位長(zhǎng)度/秒的速度沿折線(xiàn)O﹣A﹣C向終點(diǎn)C運(yùn)動(dòng),設(shè)FOB的面積為SS0),點(diǎn)F的運(yùn)動(dòng)時(shí)間為t秒,求St的關(guān)系式,并直接寫(xiě)出t的取值范圍;

4)在(3)的條件下,過(guò)點(diǎn)BBEx軸,交AC于點(diǎn)E,在動(dòng)點(diǎn)F的運(yùn)動(dòng)過(guò)程中,當(dāng)t為何值時(shí),BEF是以BE為腰的等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若代數(shù)式x2+3x﹣5的值為2,則代數(shù)式9﹣2x2﹣6x的值為______

查看答案和解析>>

同步練習(xí)冊(cè)答案