【題目】如圖所示,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,點D在⊙O上,過點C的切線交AD的延長線于點E,且AE⊥CE,連接CD.
(1)求證:DC=BC;
(2)若AB=5,AC=4,求tan∠DCE的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 中,點 D 為邊 BC 的點,點 E、F 分別是邊 AB、AC 上兩點,且 EF∥BC,若 AE:EB=m,BD:DC=n,則( )
A.若 m>1,n>1,則 2S△AEF>S△ABDB.若 m>1,n<1,則 2S△AEF<S△ABD
C.若 m<1,n<1,則 2S△AEF<S△ABDD.若 m<1,n>1,則 2S△AEF<S△ABD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具用品商店銷售A、B兩種款式文具盒,已知購進(jìn)1個A款文具盒比B款文具盒便宜5元,且用300元購入A款文具盒的數(shù)量比購入B款文具盒的數(shù)量多5個.
(1)購進(jìn)一個A款文具盒、一個B款文具盒各需多少元?
(2)若A款文具盒與B款文具盒的售價分別是20元和30元,現(xiàn)該文具用品商店計一劃用不超過1000元購入共計60個A、B兩種款式的文具盒,且全部售完,問如何安排進(jìn)貨才能使銷售利潤最大?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是四邊形ABCD的對角線,AB=BC=6,∠ABC=60°,點G1、G2分別是△ABD和△DBC的重心,則點G1、G2間的距離為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角△ABC中,BC=10,AC=11,△ABC的面積為33,點P是射線CA上一動點,以BP為直徑作圓交線段AC于點E,交射線BA于點D,交射線CB于點F.
(1)當(dāng)點P在線段AC上時,若點E為中點,求BP的長.
(2)連結(jié)EF,若△CEF為等腰三角形,求所有滿足條件的BP值.
(3)將DE繞點D順時針旋轉(zhuǎn)90°,當(dāng)點E的對應(yīng)點E'恰好落在BC上時,記△DBE'的面積為S1,△DPE的面積S2,則的值為 .(直接寫出答案即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、 F分別為邊AB、CD的中點,BD是對角線.過點有作AG∥DB交CB的延長線于點G.
(1)求證:△ADE≌△CBF;
(2)若∠G=90° ,求證:四邊形DEBF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以△ABC中BC和AC為腰向外作等腰直角△EBC和等腰直角△DAC,連結(jié)DE,且DE∥BC,EB=BC=6,四邊形EBCD的面積為24,則AB的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為2,點D是射線BC上的一個動點,以AD為邊向右作等邊△ADE,連結(jié)CE,
(1)求證:△ABD≌△ACE;
(2)若CE=,求△ACD的面積;
(3)若△ACE是直角三角形,則BD的長是 (直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,有一個由六個邊長為1的正方形組成的圖案,其中點A,B的坐標(biāo)分別為(3,5),(6,1).若過原點的直線l將這個圖案分成面積相等的兩部分,則直線l的函數(shù)解析式為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com