【題目】如圖,矩形ABCD中,AB=3,BC=4,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),按A→B→C的方向在AB和BC上移動(dòng),記PA=x,點(diǎn)D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是( )
A.B.
C.D.
【答案】B
【解析】
①點(diǎn)P在AB上時(shí),點(diǎn)D到AP的距離為AD的長度,②點(diǎn)P在BC上時(shí),根據(jù)同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y(tǒng)與x的關(guān)系式,從而得解.
①點(diǎn)P在AB上時(shí),0≤x≤3,點(diǎn)D到AP的距離為AD的長度,是定值4;
②點(diǎn)P在BC上時(shí),3<x≤5,
∵∠APB+∠BAP=90°,
∠PAD+∠BAP=90°,
∴∠APB=∠PAD,
又∵∠B=∠DEA=90°,
∴△ABP∽△DEA,
∴= ,
即,
∴y=,
縱觀各選項(xiàng),只有B選項(xiàng)圖形符合,
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy,對于點(diǎn)P(xp,yp)和圖形G,設(shè)Q(xQ,yQ)是圖形G上任意一點(diǎn),|xp﹣xQ|的最小值叫點(diǎn)P和圖形G的“水平距離”,|yp﹣yQ|的最小值叫點(diǎn)P和圖形G的“豎直距離”,點(diǎn)P和圖形G的“水平距離”與“豎直距離”的最大值叫做點(diǎn)P和圖形G的“絕對距離”
例如:點(diǎn)P(﹣2,3)和半徑為1的⊙O,因?yàn)?/span>⊙O上任一點(diǎn)Q(xQ,yQ)滿足﹣1≤xQ≤1,﹣1≤yQ≤1,點(diǎn)P和⊙O的“水平距離”為|﹣2﹣xQ|的最小值,即|﹣2﹣(﹣1)|=1,點(diǎn)P和⊙O的“豎直距離”為|3﹣yQ|的最小值即|3﹣1|=2,因?yàn)?/span>2>1,所以點(diǎn)P和⊙O的“絕對距離”為2.
已知⊙O半徑為1,A(2,),B(4,1),C(4,3)
(1)①直接寫出點(diǎn)A和⊙O的“絕對距離”
②已知D是△ABC邊上一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)D與⊙O的“絕對距離”為2時(shí),寫出一個(gè)滿足條件的點(diǎn)D的坐標(biāo);
(2)已知E是△ABC邊一個(gè)動(dòng)點(diǎn),直接寫出點(diǎn)E與⊙O的“絕對距離”的最小值及相應(yīng)的點(diǎn)E的坐標(biāo)
(3)已知P是⊙O上一個(gè)動(dòng)點(diǎn),△ABC沿直線AB平移過程中,直接寫出點(diǎn)P與△ABC的“絕對距離”的最小值及相應(yīng)的點(diǎn)P和點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為更好開展“課后延時(shí)”服務(wù),某校抽取了部分七年級(jí)學(xué)生,就課后活動(dòng)項(xiàng)目進(jìn)行調(diào)查.學(xué)校根據(jù)學(xué)生前期統(tǒng)計(jì)給出了如下四個(gè)選項(xiàng):“球類”、“棋類”、“計(jì)算機(jī)信息類”、“其他”,并將最終調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)圖中提供的信息,解決下列問題:
(1)本次調(diào)查共抽取了____名學(xué)生,扇形統(tǒng)計(jì)圖中,類所對應(yīng)的扇形圓心角大小為
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)已知選擇類的同學(xué)有兩位來自七(1)班,其余來自七(2)班,調(diào)查組準(zhǔn)備從選類同學(xué)中任選兩位做細(xì)致分析求兩位同學(xué)來自同一個(gè)班級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知,⊙O是△ABC的外接圓,AB=AC=10,BC=12,連接AO并延長交BC于點(diǎn)H.
(1)求外接圓⊙O的半徑;
(2)如圖2,點(diǎn)D是AH上(不與點(diǎn)A,H重合)的動(dòng)點(diǎn),以CD,CB為邊,作平行四邊形CDEB,DE分別交⊙O于點(diǎn)N,交AB邊于點(diǎn)M.
①連接BN,當(dāng)BN⊥DE時(shí),求AM的值;
②如圖3,延長ED交AC于點(diǎn)F,求證:NM·NF=AM·MB;
③設(shè)AM=x,要使-2<0成立,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,拋物線y=ax2+bx+c過點(diǎn)A(﹣1,0),B(3,0),C(0,3),點(diǎn)P是直線BC上方拋物線上的一動(dòng)點(diǎn),PE∥y軸,交直線BC于點(diǎn)E連接AP,交直線BC于點(diǎn) D.
(1)求拋物線的函數(shù)表達(dá)式;
(2)當(dāng)AD=2PD時(shí),求點(diǎn)P的坐標(biāo);
(3)求線段PE的最大值;
(4)當(dāng)線段PE最大時(shí),若點(diǎn)F在直線BC上且∠EFP=2∠ACO,直接寫出點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市去年成功舉辦2018郴州國際休閑旅游文化節(jié),獲評(píng)“全國森林旅游示范市”.某市有A,B,C,D,E五個(gè)景區(qū)很受游客喜愛.一旅行社對某小區(qū)居民在暑假期間去以上五個(gè)景區(qū)旅游(只選一個(gè)景區(qū))的意向做了一次隨機(jī)調(diào)查統(tǒng)計(jì),并根據(jù)這個(gè)統(tǒng)計(jì)結(jié)果制作了如下兩幅不完整的統(tǒng)計(jì)圖:
(1)該小區(qū)居民在這次隨機(jī)調(diào)查中被調(diào)查到的人數(shù)是 人, ,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該小區(qū)有居民1200人,試估計(jì)去B地旅游的居民約有多少人?
(3)小軍同學(xué)已去過E地旅游,暑假期間計(jì)劃與父母從A,B,C,D四個(gè)景區(qū)中,任選兩個(gè)去旅游,求選到A,C兩個(gè)景區(qū)的概率.(要求畫樹狀圖或列表求概率)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的周長是20,且,是邊上的中點(diǎn),點(diǎn)是邊上的一個(gè)動(dòng)點(diǎn),將沿折疊得到,連接,,當(dāng)是直角三角形時(shí),的長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙M(半徑為r),給出如下定義:若點(diǎn)P關(guān)于點(diǎn)M的對稱點(diǎn)為Q,且r≤PQ≤3r,則稱點(diǎn)P為⊙M的稱心點(diǎn).
(1)當(dāng)⊙O的半徑為2時(shí),
①如圖1,在點(diǎn)A(0,1),B(2,0),C(3,4)中,⊙O的稱心點(diǎn)是 ;
②如圖2,點(diǎn)D在直線yx上,若點(diǎn)D是⊙O的稱心點(diǎn),求點(diǎn)D的橫坐標(biāo)m的取值范圍;
(2)⊙T的圓心為T(0,t),半徑為2,直線yx+1與x軸,y軸分別交于點(diǎn)E,F.若線段EF上的所有點(diǎn)都是⊙T的稱心點(diǎn),直接寫出t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com