【題目】(7分)小敏同學測量一建筑物CD的高度,她站在B處仰望樓頂C,測得仰角為30°,再往建筑物方向走30m,到達點F處測得樓頂C的仰角為45°(BFD在同一直線上).已知小敏的眼睛與地面距離為1.5m,求這棟建筑物CD的高度(參考數據:,.結果保留整數)
科目:初中數學 來源: 題型:
【題目】△ABC 是等邊三角形,點 P 在△ABC 內,PA=2,將△PAB 繞點 A 逆時針旋轉得到△P1AC,則 P1P 的長等于( )
A. 2 B. C. D. 1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于代數式ax2+bx+c(a≠0),下列說法正確的是( )
①如果存在兩個實數p≠q,使得ap2+bp+c=aq2+bq+c,則a+bx+c=a(x-p)(x-q)
②存在三個實數m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c
③如果ac<0,則一定存在兩個實數m<n,使am2+bm+c<0<an2+bn+c
④如果ac>0,則一定存在兩個實數m<n,使am2+bm+c<0<an2+bn+c
A. ③ B. ①③ C. ②④ D. ①③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠ACB中,∠ACB=30°,將△ABC繞點C順時針旋轉60°得到△DEC,連接AE.
(1)求證:△ABC≌△AEC;
(2)若AB=AC,試判斷四邊形ACDE的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線AC的表達式為y=x+8,點P從點A開始沿AO向點O以1個單位/s的速度移動,點Q從點O開始沿OC向點C以2個單位/s的速度移動.如果P,Q兩點分別從點A,O同時出發(fā),經過幾秒能使△PQO的面積為8個平方單位?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在實數的計算過程中去發(fā)現規(guī)律.
(1)5>2,而<,規(guī)律:若a>b>0,那么與的大小關系是: .
(2)對于很小的數0.1、0.001、0.00001,它們的倒數= ;= ;= .規(guī)律:當正實數x無限。o限接近于0),那么它的倒數 .
(3)填空:若實數x的范圍是0<x<2,寫出的范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)的圖象經過M(1,0)和N(3,0)兩點,且與y軸交于D(0,3),直線l是拋物線的對稱軸.
(1)求該拋物線的解析式.
(2)若過點A(﹣1,0)的直線AB與拋物線的對稱軸和x軸圍成的三角形面積為6,求此直線的解析式.
(3)點P在拋物線的對稱軸上,⊙P與直線AB和x軸都相切,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點A(1,4)和點B(5,1)在平面直角坐標系中的位置如圖所示:
(1)點A1、B1分別為點A、B關于y軸的對稱點,請畫出四邊形AA1B1B,并寫出A1、B1的坐標;
(2)在(1)的條件下,畫一條過四邊形AA1B1B的一個頂點的線段,將四邊形AA1B1B分成兩個圖形,并且使分得的圖形中的一個是軸對稱圖形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點E,將△BCE繞點C順時針旋轉到△DCF的位置,并延長BE交DF于點G.
(1)求證:△BDG∽△DEG;
(2)若EGBG=4,求BE的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com