【題目】如圖,為了測量某風景區(qū)內(nèi)一座塔AB的高度,小明分別在塔的對面一樓房CD的樓底C,樓頂D處,測得塔頂A的仰角為45°和30°,已知樓高CD為10m,求塔的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù): ≈1.41, ≈1.73)

【答案】解:過點D作DE⊥AB于點E,得矩形DEBC,
設(shè)塔高AB=xm,則AE=(x﹣10)m,
在Rt△ADE中,∠ADE=30°,
則DE= (x﹣10)米,
在Rt△ABC中,∠ACB=45°,
則BC=AB=x,
由題意得, (x﹣10)=x,
解得:x=15+5 ≈23.7.即AB≈23.7米.
答:塔的高度約為23.7米.

【解析】過點D作DE⊥AB于點E,設(shè)塔高AB=x,則AE=(x﹣10)m,在Rt△ADE中表示出DE,在Rt△ABC中表示出BC,再由DE=BC可建立方程,解出即可得出答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y= (k≠0)的圖象經(jīng)過A,B兩點,過點A作AC⊥x軸,垂足為C,過點B作BD⊥x軸,垂足為D,連接AO,連接BO交AC于點E,若OC=CD,四邊形BDCE的面積為2,則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x、y的方程組 的解滿足x>0,y>0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實踐操作
如圖,△ABC是直角三角形,∠ACB=90°,利用直尺和圓規(guī)按下列要求作圖,并在圖中標明相應的字母.(保留作圖痕跡,不寫作法)
(1)作∠BAC的平分線,交BC于點O;
(2)以O(shè)為圓心,OC為半徑作圓.
(3)在你所作的圖中,AB與⊙O的位置關(guān)系是;(直接寫出答案)
(4)若AC=5,BC=12,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】
(1)計算:|﹣2|﹣ +(﹣2013)0
(2)計算:(1+ )÷

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列三個函數(shù):①y=x+1;② ;③y=x2﹣x+1.其圖象既是軸對稱圖形,又是中心對稱圖形的個數(shù)有(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AD>AB.
(1)作出∠ABC的平分線(尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)若(1)中所作的角平分線交AD于點E,AF⊥BE,垂足為點O,交BC于點F,連接EF.求證:四邊形ABFE為菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線x=﹣4與x軸交于點E,一開口向上的拋物線過原點交線段OE于點A,交直線x=﹣4于點B,過B且平行于x軸的直線與拋物線交于點C,直線OC交直線AB于D,且AD:BD=1:3.

(1)求點A的坐標;
(2)若△OBC是等腰三角形,求此拋物線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊△ABC的邊長為3,P為BC上一點,且BP=1,D為AC上一點,若∠APD=60°,則CD的長為

查看答案和解析>>

同步練習冊答案