【題目】定義:點(diǎn)P是△ABC內(nèi)部或邊上的點(diǎn)(頂點(diǎn)除外),在△PAB,△PBC,△PCA中,若至少有一個(gè)三角形與△ABC相似,則稱點(diǎn)P是△ABC的自相似點(diǎn).
例如:如圖1,點(diǎn)P在△ABC的內(nèi)部,∠PBC=∠A,∠PCB=∠ABC,則△BCP∽△ABC,故點(diǎn)P為△ABC的自相似點(diǎn).
請你運(yùn)用所學(xué)知識,結(jié)合上述材料,解決下列問題:
在平面直角坐標(biāo)系中,點(diǎn)M是曲線C:上的任意一點(diǎn),點(diǎn)N是x軸正半軸上的任意一點(diǎn).
(1) 如圖2,點(diǎn)P是OM上一點(diǎn),∠ONP=∠M, 試說明點(diǎn)P是△MON的自相似點(diǎn); 當(dāng)點(diǎn)M的坐標(biāo)是,點(diǎn)N的坐標(biāo)是時(shí),求點(diǎn)P 的坐標(biāo);
(2) 如圖3,當(dāng)點(diǎn)M的坐標(biāo)是,點(diǎn)N的坐標(biāo)是時(shí),求△MON的自相似點(diǎn)的坐標(biāo);
(3) 是否存在點(diǎn)M和點(diǎn)N,使△MON無自相似點(diǎn),?若存在,請直接寫出這兩點(diǎn)的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2)或;(3)存在,
【解析】
試題分析:(1)易證點(diǎn)P是三角形MON的自相似點(diǎn),過點(diǎn)P作PD⊥x軸于D點(diǎn)根據(jù)M、N坐標(biāo)易知∠MNO=90°,再利用三角函數(shù)可求出P點(diǎn)坐標(biāo);(2)根據(jù)坐標(biāo)發(fā)現(xiàn)ON=MN=2,要找自相似點(diǎn)只能在∠ONM中做∠ONP=∠OMN或∠MNP=∠MON,分別畫出圖形,根據(jù)圖形性質(zhì),結(jié)合相似可求出自相似點(diǎn)的坐標(biāo);(3)根據(jù)前兩問可發(fā)現(xiàn),要想有自相似點(diǎn),其實(shí)質(zhì)就是在大角里面做小角,當(dāng)三個(gè)角都相等時(shí),即△OMN為等邊三角形時(shí),不存在自相似點(diǎn),因此可得到直線OM的解析式y(tǒng)=x,與的交點(diǎn)就是M,從而可以求得N的坐標(biāo).
試題解析:(1)在△ONP和△OMN中,
∵∠ONP=∠OMN,∠NOP=∠MON
∴△ONP∽△OMN
∴點(diǎn)P是△M0N的自相似點(diǎn).
過點(diǎn)P作PD⊥x軸于D點(diǎn).
∴.
∵,
∴, ∴.
在Rt△OPN中,.
.
. ∴.
(2)①如圖2,過點(diǎn)M作MH⊥x軸于H點(diǎn),
∵ ,
∴,直線OM的表達(dá)式為.
∵是△M0N的自相似點(diǎn),∴△∽△NOM
過點(diǎn)作⊥x軸于Q點(diǎn),
∴
∵的橫坐標(biāo)為1,∴ ∴.
如圖3,△∽△NOM ,
∴ ∴ .
∵的縱坐標(biāo)為,
∴ ∴,
∴.
綜上所述,或.
(3)存在,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場將一款空調(diào)按標(biāo)價(jià)的八折出售,仍可獲利10%,若該空調(diào)的進(jìn)價(jià)為2000元,則標(biāo)價(jià)元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=2,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(4,0),其部分圖象如圖所示,下列結(jié)論:
①拋物線過原點(diǎn);
②4a+b+c=0;
③a﹣b+c<0;
④拋物線的頂點(diǎn)坐標(biāo)為(2,b);
⑤當(dāng)x<2時(shí),y隨x增大而增大.
其中結(jié)論正確的是( )
A.①②③ B.③④⑤ C.①②④ D.①④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,經(jīng)過點(diǎn)A的雙曲線y=(x>0)同時(shí)經(jīng)過點(diǎn)B,且點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)A的橫坐標(biāo)為,∠AOB=∠OBA=45°,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【操作發(fā)現(xiàn)】
(1)如圖1,為等邊三角形,先將三角板中的角與重合,再將三角板繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于且小于).旋轉(zhuǎn)后三角板的一直角邊與交于點(diǎn).在三角板斜邊上取一點(diǎn),使,線段上取點(diǎn),使,連接,.
①求的度數(shù);
②與相等嗎?請說明理由;
【類比探究】
(2)如圖2,為等腰直角三角形,,先將三角板的角與重合,再將三角板繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于且小于).旋轉(zhuǎn)后三角板的一直角邊與交于點(diǎn).在三角板另一直角邊上取一點(diǎn),使,線段上取點(diǎn),使,連接,.請直接寫出探究結(jié)果:
①的度數(shù);
②線段之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合:
(1)如圖①,在正方形ABCD中,△AEF的頂點(diǎn)E,F(xiàn)分別在BC,CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù);
(2)如圖②,在Rt△ABD中,∠BAD=90°,AB=AD,點(diǎn)M,N是BD邊上的任意兩點(diǎn),且∠MAN=45°,將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADH位置,連接NH,試判斷MN,ND,BM之間的數(shù)量關(guān)系,并說明理由.
(3)在圖①中,連接BD分別交AE,AF于點(diǎn)M,N,若DN=3 ,BM=3 ,求MN的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com