【題目】【操作發(fā)現(xiàn)】

(1)如圖1,為等邊三角形,先將三角板中的角與重合,再將三角板繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于且小于).旋轉(zhuǎn)后三角板的一直角邊與交于點(diǎn).在三角板斜邊上取一點(diǎn),使,線段上取點(diǎn),使,連接,.

的度數(shù);

相等嗎?請(qǐng)說(shuō)明理由;

【類比探究】

(2)如圖2,為等腰直角三角形,,先將三角板的角與重合,再將三角板繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于且小于).旋轉(zhuǎn)后三角板的一直角邊與交于點(diǎn).在三角板另一直角邊上取一點(diǎn),使,線段上取點(diǎn),使,連接.請(qǐng)直接寫出探究結(jié)果:

的度數(shù);

線段之間的數(shù)量關(guān)系.

【答案】(1)120°;DE=EF;理由見解析;(2)90°;AE2+DB2=DE2理由見解析.

【解析】

試題分析:(1)由等邊三角形的性質(zhì)得出AC=BC,BAC=B=60°,求出ACF=BCD,證明ACF≌△BCD,得出CAF=B=60°,求出EAF=BAC+CAF=120°;

證出DCE=FCE,由SAS證明DCE≌△FCE,得出DE=EF即可;

(2)由等腰直角三角形的性質(zhì)得出AC=BC,BAC=B=45°,證出ACF=BCD,由SAS證明ACF≌△BCD,得出CAF=B=45°,AF=DB,求出EAF=BAC+CAF=90°;

證出DCE=FCE,由SAS證明DCE≌△FCE,得出DE=EF;在RtAEF中,由勾股定理得出AE2+AF2=EF2,即可得出結(jié)論.

試題解析:(1)①∵△ABC是等邊三角形,

AC=BC,BAC=B=60°,

∵∠DCF=60°,

∴∠ACF=BCD,

ACF和BCD中,

,

∴△ACF≌△BCD(SAS),

∴∠CAF=B=60°,

∴∠EAF=BAC+CAF=120°;

DE=EF;理由如下:

∵∠DCF=60°,DCE=30°,

∴∠FCE=60°﹣30°=30°,

∴∠DCE=FCE,

DCE和FCE中,

∴△DCE≌△FCE(SAS),

DE=EF;

(2)①∵△ABC是等腰直角三角形,ACB=90°,

AC=BC,BAC=B=45°,

∵∠DCF=90°,

∴∠ACF=BCD,

ACF和BCD中,

,

∴△ACF≌△BCD(SAS),

∴∠CAF=B=45°,AF=DB,

∴∠EAF=BAC+CAF=90°;

AE2+DB2=DE2,理由如下:

∵∠DCF=90°,DCE=45°,

∴∠FCE=90°﹣45°=45°,

∴∠DCE=FCE,

DCE和FCE中,

,

∴△DCE≌△FCE(SAS),

DE=EF,

在RtAEF中,AE2+AF2=EF2,

AF=DB,

AE2+DB2=DE2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若(x﹣2)(x+3)=x2+mx+n,則mn=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:點(diǎn)PABC內(nèi)部或邊上的點(diǎn)(頂點(diǎn)除外),在PAB,PBCPCA中,若至少有一個(gè)三角形與ABC相似,則稱點(diǎn)PABC的自相似點(diǎn).

例如:圖1,點(diǎn)PABC的內(nèi)部,PBC=A,PCB=ABC,BCP∽△ABC,故點(diǎn)PABC的自相似點(diǎn).

請(qǐng)你運(yùn)用所學(xué)知識(shí),結(jié)合上述材料,解決下列問題:

在平面直角坐標(biāo)系中,點(diǎn)M曲線C上的任意一點(diǎn),點(diǎn)Nx軸正半軸上的任意一點(diǎn).

(1) 如圖2,點(diǎn)P是OM上一點(diǎn),ONP=M, 試說(shuō)明點(diǎn)P是MON的自相似點(diǎn); 當(dāng)點(diǎn)M的坐標(biāo)是點(diǎn)N的坐標(biāo)是時(shí),求點(diǎn)P 的坐標(biāo);

(2) 如圖3,當(dāng)點(diǎn)M的坐標(biāo)是,點(diǎn)N的坐標(biāo)是時(shí),求MON的自相似點(diǎn)的坐標(biāo);

(3) 是否存在點(diǎn)M和點(diǎn)N,使MON無(wú)自相似點(diǎn),?若存在,請(qǐng)直接寫出這兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】∠1 ∠2 互為鄰補(bǔ)角,∠1=36°,∠2=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x,y為有理數(shù),現(xiàn)規(guī)定一種新運(yùn)算“〇”滿足xyy22x

1)求5〇(﹣3);

2)求(5x)﹣2yx),其中|x1|+y+240

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】﹣8的立方根是(
A.﹣2
B.±2
C.﹣4
D.±4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)多邊形的每個(gè)內(nèi)角都為135°,則它的邊數(shù)為(
A.6
B.8
C.5
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)軸上表示﹣2的點(diǎn)與表示3的點(diǎn)之間的距離是(
A.5
B.﹣5
C.1
D.﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)E、F分別是AD、BC的中點(diǎn).求證:AF=CE.

查看答案和解析>>

同步練習(xí)冊(cè)答案