【題目】在函數(shù)學(xué)習(xí)中,我們經(jīng)歷了“確定函數(shù)表達(dá)式一利用函數(shù)圖象研究其性質(zhì)一運(yùn)用函數(shù)解決問題”的學(xué)習(xí)過程,在畫函數(shù)圖象時(shí),我們通過描點(diǎn)或平移的方法畫出了所學(xué)的函數(shù)圖象,同時(shí)我們也學(xué)習(xí)了絕對值的意義|a|,結(jié)合上面經(jīng)歷的學(xué)習(xí)過程,現(xiàn)在來解決下面的問題:在函數(shù)y=|kx﹣1|+b,當(dāng)x=1時(shí),y=﹣2;當(dāng)x=0時(shí),y=﹣1.
(1)求這個(gè)函數(shù)的表達(dá)式;
(2)請你結(jié)合以下表格在坐標(biāo)系中畫出該函數(shù)的圖象.
(3)觀察這個(gè)函效圖象,請寫出該函數(shù)的兩條性質(zhì);
(4)已知函數(shù)y=﹣(x>0)的圖象如圖所示,請結(jié)合圖象寫出|kx﹣1|﹣﹣b(x0)的解集.
【答案】(1);(2)見解析;(3)函數(shù)關(guān)于對稱;函數(shù)有最小值-2;(4)
【解析】
(1)根據(jù)在函數(shù)y=|kx﹣1|+b中,當(dāng)x=1時(shí),y=﹣2;當(dāng)x=0時(shí),y=﹣1,可以求得該函數(shù)的表達(dá)式;
(2)根據(jù)表格中的數(shù)據(jù),描點(diǎn)、連線,可以畫出該函數(shù)的圖象;
(3)根據(jù)圖象得出函數(shù)的性質(zhì)即可;
(4)根據(jù)圖象可以直接寫出所求不等式的解集.
解:(1)∵在函數(shù)y=|kx﹣1|+b中,當(dāng)x=1時(shí),y=﹣2;當(dāng)x=0時(shí),y=﹣1,
∴,得 ,
∴這個(gè)函數(shù)的表達(dá)式是y=|x﹣1|﹣2;
(2)描點(diǎn)、連線,畫出該函數(shù)的圖象如圖所示:
(3)觀察這個(gè)函效圖象,得出函數(shù)的性質(zhì):
①函數(shù)關(guān)于直線x=1對稱;
②函數(shù)有最小值﹣2;
(4)由函數(shù)圖象可得,當(dāng)1<x<2時(shí),函數(shù)y=(x>0)的圖像在函的上方,故的解集是1<x<2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩張等寬的紙條交叉疊放在一起,若重疊都分構(gòu)成的四邊形ABCD中,AB=3,BD=4.則AC的長為_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為⊙的直徑,,為圓上的兩點(diǎn),,弦,相交于點(diǎn),
(1)求證:
(2)若,,求⊙的半徑;
(3)在(2)的條件下,過點(diǎn)作⊙的切線,交的延長線于點(diǎn),過點(diǎn)作交⊙于, 兩點(diǎn)(點(diǎn)在線段上),求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀新知
一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)非零常數(shù),這個(gè)數(shù)列就叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的公比,公比通常用字母表示().
即:在數(shù)列,,,…,.(為正整數(shù))中,若,,…,則數(shù)列,,,…,.(為正整數(shù))叫做等比數(shù)列.其中叫數(shù)列的首項(xiàng),叫第二項(xiàng),…,叫第項(xiàng),叫做數(shù)列的公比.
例如:數(shù)列1,2,4,8,16,…是等比數(shù)列,公比.
計(jì)算:求等比數(shù)列1,3,,,…,的和.
解:令,則.
因此.所以.
即.
學(xué)以致用
(1)選擇題:下列數(shù)列屬于等比數(shù)列的是( )
A.1,2,3,4,5 B.2,6,18,21,63
C.56,28,14,7, D.-11,22,-33,44,-55
(2)填空題:已知數(shù)列,,,…,是公比為4的等比數(shù)列,若它的首項(xiàng),則它的第項(xiàng)等于_________.
(3)解答題:求等比數(shù)列1,5,,,…前2021項(xiàng)的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與直線都經(jīng)過,兩點(diǎn),該拋物線的頂點(diǎn)為.
(1)求拋物線和直線的解析式;
(2)設(shè)點(diǎn)是直線下方拋物線上的一動(dòng)點(diǎn),求面積的最大值,并求面積最大時(shí),點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個(gè)圖案均由邊長相等的黑、白兩色正方形按規(guī)律拼接而成,照此規(guī)律,第n個(gè)圖案中白色正方形比黑色正方形多________個(gè).(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按要求作圖,不要求寫作法,但要保留作圖痕跡.
(1)如圖1,A為圓E上一點(diǎn),請用直尺(不帶刻度)和圓規(guī)作出圓內(nèi)接正方形;
(2)我們知道,三角形具有性質(zhì),三邊的垂直平分線相交于同一點(diǎn),三條角平分線相交于一點(diǎn),三條中線相交于一點(diǎn),事實(shí)上,三角形還具有性質(zhì):三條高交于同一點(diǎn),請運(yùn)用上述性質(zhì),只用直尺(不帶刻度)作圖:
①如圖2,在□ABCD中,E為CD的中點(diǎn),作BC的中點(diǎn)F;
②圖3,在由小正方形組成的網(wǎng)格中,的頂點(diǎn)都在小正方形的頂點(diǎn)上,作△ABC的高AH
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)M是邊BC上的一點(diǎn)(不與B、C重合),點(diǎn)N在CD邊的延長線上,且滿足∠MAN=90°,聯(lián)結(jié)MN、AC,MN與邊AD交于點(diǎn)E.
(1)求證:AM=AN;
(2)如果∠CAD=2∠NAD,求證:AM2=ACAE;
(3)MN和AC相交于O點(diǎn),若BM=1,AB=3,試猜想線段OM,ON的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為□ABCD的對稱中心,點(diǎn)A的坐標(biāo)為(-2,-2),AB=5,AB//x軸,反比例函數(shù)的圖象經(jīng)過點(diǎn)D,將□ABCD沿y軸向下平移,使點(diǎn)C的對應(yīng)點(diǎn)C'落在反比例函數(shù)的圖象上,則平移過程中線段AC掃過的面積為( )
A.24B.20C.18D.14
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com