【題目】已知:如圖,直角△ABC 中,AC=BC,∠C=90°,∠CAB=∠ABC=45°,過點 B 作射線BD⊥AB 于 B,點 P 為 BC 邊上任一點,在射線上取一點 Q,使得 PQ=AP.
(1)請依題意補全圖形;
(2)試判斷 AP 和 PQ 的位置關系,并加以證明.
【答案】(1)圖見解析.(2)垂直,證明見解析.
【解析】
(1)根據(jù)題意在CB取點P,再以點P為圓心AP為半徑交BD于點Q,連接PQ.
(2)通過證明三角形全等,得到對應角相等,再根據(jù)等量代換得到∠APQ=90°即可得到AP與PQ垂直.
(1)
(2)
如圖作BD=AB,PM∥BD,過點Q作QG垂直于BH,并延長與PM相交于點M.
則三角形PMG與三角形DBH全等
∴PM=BD=AB
又三角形BGQ是等腰直角三角形
∴BG=QG
則PG-BG=MG-QG
即PB=MQ
在三角形PMQ與三角形ABP中
∴(SSS)
∴∠BAP=∠MPQ
又∠BAP+∠CAP=∠MPQ+∠QPG=45°
則∠CAP=∠QPG
∵∠CAP+∠APC=90°
∴∠QPG +∠APC=90°
又∠APQ+(∠QPG +∠APC)=180°
則∠APQ=90°
故AP與PQ垂直.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,直線y=﹣x﹣1與x軸,y軸的交點分別為A、B,以x=﹣1為對稱軸的拋物線y=x2+bx+c與x軸分別交于點A、C,直線x=﹣1與x軸交于點D.
(1)求拋物線的解析式;
(2)在線段AB上是否存在一點P,使以A,D,P為頂點的三角形與△AOB相似?若存在,求出點P的坐標;如果不存在,請說明理由;
(3)若點Q在第三象限內,且tan∠AQD=2,線段CQ是否存在最小值,如果存在直接寫出最小值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是2,點E是CD邊的中點,點F是邊BC上不與點B,C重合的一個動點,把∠C沿直線EF折疊,使點C落在點C′處.當△ADC′為等腰三角形時,FC的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,小蘭用尺規(guī)作圖作△ABC邊AC上的高BH,作法如下:
①分別以點DE為圓心,大于DE的一半長為半徑作弧兩弧交于F;
②作射線BF,交邊AC于點H;
③以B為圓心,BK長為半徑作弧,交直線AC于點D和E;
④取一點K使K和B在AC的兩側;
所以BH就是所求作的高.其中順序正確的作圖步驟是( )
A.①②③④B.④③①②C.②④③①D.④③②①
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,設點A(0,4)、B(3,8).若點P(x,0),使得∠APB最大,則x=( 。
A. 3 B. 0 C. 4 D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程=1的解為負數(shù),且關于x、y的二元一次方程組的解之和為正數(shù),則下列各數(shù)都滿足上述條件a的值的是( )
A. ,2,5 B. 0,3,5 C. 3,4,5 D. 4,5,6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC≌Rt△CED(∠ACB=∠CDE=90°),點D在BC上,AB與CE相交于點F
(1) 如圖1,直接寫出AB與CE的位置關系
(2) 如圖2,連接AD交CE于點G,在BC的延長線上截取CH=DB,射線HG交AB于K,求證:HK=BK
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是AB延長線上一點,CD與⊙O相切于點E,AD⊥CD于點D.
(1)求證:AE平分∠DAC;
(2)若AB=4,∠ABE=60°.
①求AD的長;
②求出圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com