如圖,Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,E是BC的中點,連接DE、OE.
(1)判斷DE與⊙O的位置關(guān)系并說明理由;
(2)求證:
(3)若tanC=,DE=2,求AD的長.
(1)證明∠EDO=∠EBO=90°,所以DE與⊙O相切 (2)通過證明AC="2OE" ,BC2=CD·AC得BC2=2CD·OE (3)
解析試題分析:(1) DE與⊙O相切
理由如下:連接OD,BD,
∵AB是直徑,∴∠ADB=∠BDC=90°
∵E是BC的中點,∴DE=BE=CE,∴∠EDB=∠EBD,
∵OD=OB,∴∠OBD=∠ODB.
∴∠EDO=∠EBO=90°
∴DE與⊙O相切
(2)證明:由題意得OE是的ABC的中位線,∴AC=2OE
∵∠ABC=∠BDC=900,∠C=∠C ,∴ABC∽BDC
∴,∴BC2=CD·AC,∴BC2=2CD·OE
(3) ∵DE=2 BC=4 AB=4. tanC
tanA=, 設(shè)BD=AD,
考點:直線與圓相切,相似三角形,三角函數(shù)
點評:本題考查直線與圓相切,相似三角形,三角函數(shù),要求學(xué)生掌握直線與圓相切,會證明直線與圓相切,熟悉相似三角形的判定方法,會證明兩個三角形相似
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com