【題目】如圖,已知,線段直線,垂足為,平移線段,使點(diǎn)與點(diǎn)重合,點(diǎn)的對應(yīng)點(diǎn)記為點(diǎn).

操作與思考:

1)畫出線段和直線;

2)直線的位置關(guān)系是_______,理由是:____________________________;

線段的數(shù)量關(guān)系是_______,理由是:____________________________.

實(shí)踐與應(yīng)用:

3)如圖,等邊和等邊的面積分別為35,點(diǎn)、在一直線上,則的面積是_____________.

4)如圖,網(wǎng)格中每個(gè)小正方形的邊長為1,請用三種不同方法,求出的面積.

【答案】1)見解析;(2,理由見解析;,理由見解析;(35;(4)見解析.

【解析】

1)根據(jù)平移的性質(zhì)及線段、直線的含義畫圖即可;

2)根據(jù)平移的性質(zhì)解答即可;

3)根據(jù)兩平行線間的距離相等及三角形的面積公式求解即可;

4)分別用補(bǔ)法、割法及兩平行線間的距離相等求解即可.

操作與思考:

1)畫線段和直線;

2 理由:兩組對應(yīng)點(diǎn)的連線平行(或在同一條直線上);

3 理由:平移不改變圖形的大;

實(shí)踐與應(yīng)用:

3)∵△ABC與△DCE都是等邊三角形,

∴∠ACB=DEC=60°,

ACDE,

(4)方法1 ;

方法2 ;

方法3:∵

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下列填空.

如圖,已知∠B+BCD=180°,∠B=D.求證:∠E=DFE.

證明:∵∠B+BCD=180°(已知),

ABCD .

∴∠B=DCE .

又∵∠B=D(已知 ,

___________ ( 等量代換 ).

ADBE(內(nèi)錯(cuò)角相等,兩直線平行)

∴∠E=DFE .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,點(diǎn)OAC邊上的一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線MNBC,設(shè)MN交∠BCA的角平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F

1)求證:EO=FO

2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,已知∠1+2=180°,∠2=B,試說明∠DEC+C=180°,請完成下列填空:

證明:∵∠1+2=180°(已知)

__________(____________________)

______=EFC(____________________)

又∵2=B(已知)

∴∠2=______(等量代換)

___________(內(nèi)錯(cuò)角相等,兩直線平行)

∴∠DEC+C=180°(兩直線平行,同旁內(nèi)角互補(bǔ))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個(gè)運(yùn)輸隊(duì)承包了一家公司運(yùn)送貨物的業(yè)務(wù),第一次運(yùn)送18噸,派了1輛大卡車和5輛小卡車;第二次運(yùn)送38噸,派了2輛大卡車和11輛小卡車,并且兩次派的車都剛好裝滿。

(1)兩種車型的載重量各是多少噸?

(2)若大卡車運(yùn)送一次的費(fèi)用為200元,小卡車運(yùn)送一次的費(fèi)用為60元,在第一次運(yùn)送過程中怎樣安排大小車輛,才能使費(fèi)用最少?(直接寫出派車方案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將2×2的正方形網(wǎng)格如圖所示的放置在平面直角坐標(biāo)系中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),每個(gè)小正方形的邊長都是1,正方形ABCD的頂點(diǎn)都在格點(diǎn)上,若直線y=kx(k≠0)與正方形ABCD有公共點(diǎn),則k不可能是( )

A.3
B.2
C.1
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將八個(gè)邊長為1的小正方形擺放在平面直角坐標(biāo)系中,若過原點(diǎn)的直線l將圖形分成面積相等的兩部分,則將直線l向右平移3個(gè)單位后所得直線l′的函數(shù)關(guān)系式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正五邊形ABCDE的邊長為2,連結(jié)AC、AD、BE,BE分別與AC和AD相交于點(diǎn)F、G,連結(jié)DF,給出下列結(jié)論:①∠FDG=18°;②FG=3﹣ ;③(S四邊形CDEF2=9+2 ;④DF2﹣DG2=7﹣2 .其中結(jié)論正確的個(gè)數(shù)是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑為10,弦AB的長為6,M是弦AB上的一動(dòng)點(diǎn),則線段的OM的長的取值范圍是(
A.3≤OM≤5
B.4≤OM≤5
C.3<OM<5
D.4<OM<5

查看答案和解析>>

同步練習(xí)冊答案